L'ordre faible facial

et tout son gloire

Aram Dermenjian

Présentation préntée comme exigence partielle du doctorat en mathématiques. Université du Québec à Montréal

30 août 2019

Outline

How to arrange hyperplanes.

The facial weak order in all its glory.

The path of least resistance.

What else?

How to arrange hyperplanes

A. Dermenjian (UQAM)

The facial weak order in all its glory

00 4.00 0010

 $\sim \pi/10?$

Poset of Regions

A basic human problem

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

A basic human problem

ヘロト 人間 とくほとくほう

Poset of Regions

A basic human problem

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Poset of Regions

A basic human problem

What is a hyperplane?

- $(V, \langle \cdot, \cdot \rangle)$ *n*-dim real Euclidean vector space.
- A hyperplane H is codim 1 subspace of V with normal e_H .

Arranging hyperplanes

- A hyperplane arrangement is $\mathcal{A} = \{H_1, H_2, \dots, H_k\}$.
- \mathcal{A} is *central* if $\{0\} \subseteq \bigcap \mathcal{A}$.
- Central \mathcal{A} is *essential* if $\{0\} = \bigcap \mathcal{A}$.

Example

In terms of food?

Central essential hyperplane arrangement

Exploding arrangements

- Regions R_A closures of connected components of V without A.
- **Faces** $\mathscr{F}_{\mathcal{A}}$ intersections of some regions.

- **Base region** $B \in \mathscr{R}_A$ some fixed region
- Separation set for $R \in \mathcal{R}_A$

- **Base region** $B \in \mathscr{R}_A$ some fixed region
- Separation set for $R \in \mathscr{R}_A$

- **Base region** $B \in \mathscr{R}_A$ some fixed region
- Separation set for $R \in \mathscr{R}_A$

- **Base region** $B \in \mathscr{R}_A$ some fixed region
- Separation set for $R \in \mathscr{R}_A$

- **Base region** $B \in \mathscr{R}_A$ some fixed region
- Separation set for $R \in \mathscr{R}_A$ $S(R) \coloneqq \{H \in \mathcal{A} \mid H \text{ separates } R \text{ from } B\}$
- Poset of Regions $PR(\mathcal{A}, B)$ where $R \leq_{PR} R' \Leftrightarrow S(R) \subseteq S(R')$ H_1 H_2 H_2 H_3 H_1 H_1 H_3 H_1 H_1 H_1 H_1

э

Ordering all the things

 Lattice - poset where every two elements have a meet (greatest lower bound) and join (least upper bound).

Example

- The lattice $(\mathbb{N}, |)$ where $a \leq b \Leftrightarrow a | b$.
 - meet greatest common divisor

■ join - least common multiple

Simply simplicial arrangements

- A region R is simplicial if normal vectors for boundary hyperplanes are linearly independent.
- \mathcal{A} is *simplicial* if all $\mathscr{R}_{\mathcal{A}}$ simplicial.

Example

A regional lattice

Theorem (Björner, Edelman, Ziegler '90)

If A is simplicial then PR(A, B) is a lattice for any $B \in \mathscr{R}_A$. If PR(A, B) is a lattice then B is simplicial.

Example

A regional lattice

Theorem (Björner, Edelman, Ziegler '90)

If A is simplicial then PR(A, B) is a lattice for any $B \in \mathscr{R}_A$. If PR(A, B) is a lattice then B is simplicial.

Example

13/10¹⁰

A. Dermenjian (UQAM)

The facial weak order in all its glory

Facial weak order in all its glory

30 Aug 2019

Lattice

Facial intervals

Proposition (Björner, Las Vergas, Sturmfels, White, Ziegler '93)

Let \mathcal{A} be central with base region B. For every $F \in \mathscr{F}_{\mathcal{A}}$ there is a unique interval $[m_F, M_F]$ in $PR(\mathcal{A}, B)$ such that $[m_F, M_F] = \{R \in \mathscr{R}_{\mathcal{A}} \mid F \subseteq R\}$

Lattice

Facial weak order (!!!)

Let \mathcal{A} be a central hyperplane arrangement and B a base region in $\mathscr{R}_{\mathcal{A}}$.

Definition

The *facial weak order* is the order FW(A, B) on \mathscr{F}_A where for $F, G \in \mathscr{F}_A$:

$$F \leq G \Leftrightarrow m_F \leq_{\mathsf{PR}} m_G$$
 and $M_F \leq_{\mathsf{PR}} M_G$

20 Aug 20

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $15/10^{10}$

Lattice

Lattice

Lattice

Lattice

Lattice

A first example

The facial weak order in all its glory

30 Aug 2019 17/

Lattice

Lattice

Lattice

Facial weak order lattice

Theorem (D., Hohlweg, McConville, Pilaud '19+)

The facial weak order FW(A, B) is a lattice when PR(A, B) is a lattice.

30 Aug 2019 18

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Geometric versions Equivalence + Lattice Hyperplanes

Rewind: How did we get here?

A. Dermenjian (UQAM)

The facial weak order in all its glory

< □ ▶ < 급 ▶ < 들 ▶ < 들 ▶ 20 Aug 2010 10

19/Ack(100,

Geometric versions Equivalence + Lattice Hyperplanes

The origins

- **2001:** Krob, Latapy, Novelli, Phan, and Schwer extended the weak order of Coxeter groups to an order on all the faces of its associated arrangement for type *A*.
- 2006: Palacios and Ronco extended this new order to Coxeter groups of all types using cover relations.

Geometric versions Equivalence + Lattice Hyperplanes

The origins

- **2001:** Krob, Latapy, Novelli, Phan, and Schwer extended the weak order of Coxeter groups to an order on all the faces of its associated arrangement for type *A*.
- 2006: Palacios and Ronco extended this new order to Coxeter groups of all types using cover relations.
- Questions:
 - Can we extend this to all Coxeter group types and hyperplane arrangements?
 - Can we find both local and global definitions?
 - When do we actually get a lattice?

□ ▶ < @ ▶ < 필 ▶ < 필 ▶
30 Aug 2019 20/

э

Geometric versions Equivalence + Lattice Hyperplanes

The infamous Coxeter

A. Dermenjian (UQAM)

The facial weak order in all its glory

20 Aug 2010 21

э

イロト イヨト イヨト イヨト

Geometric versions Equivalence + Lattice Hyperplanes

Coxeter's Idea

æ

イロト イヨト イヨト イヨト
Geometric versions Equivalence + Lattice Hyperplanes

Coxeter's Idea

イロト イヨト イヨト イヨト

2/a lot

æ

Geometric versions Equivalence + Lattice Hyperplanes

Coxeter's Idea

< ロ > < 回 > < 回 > < 回 > < 回</p>

2/a lot

э

Geometric versions Equivalence + Lattice Hyperplanes

Coxeter's Idea

・ロト ・聞 ト ・ ヨト ・ ヨト

э

Geometric versions Equivalence + Lattice Hyperplanes

A failure

Э.

イロト イヨト イヨト イヨト

3/a lot

Geometric versions Equivalence + Lattice Hyperplanes

A failure

æ

イロト イヨト イヨト イヨト

Geometric versions Equivalence + Lattice Hyperplanes

A failure

æ

ヘロト 人間 とくほとくほう

Geometric versions Equivalence + Lattice Hyperplanes

A failure

æ

イロト イヨト イヨト イヨト

Geometric versions Equivalence + Lattice Hyperplanes

A failure

æ

イロト イヨト イヨト イヨト

Geometric versions Equivalence + Lattice Hyperplanes

A failure

æ

イロト イヨト イヨト イヨト

3/a lot

Geometric versions Equivalence + Lattice Hyperplanes

A failure

æ

イロト イヨト イヨト イヨト

Geometric versions Equivalence + Lattice Hyperplanes

A failure

Э.

イロト イヨト イヨト イヨト

Geometric versions Equivalence + Lattice Hyperplanes

Coxeterian systems

■ Finite Coxeter System (W, S) such that

$$\textit{W} := \langle \textit{s} \in \textit{S} \mid (\textit{s}_i \textit{s}_j)^{m_{i,j}} = \textit{e} ext{ for } \textit{s}_i, \textit{s}_j \in \textit{S}
angle$$

where $m_{i,j} \in \mathbb{N}^*$ and $m_{i,j} = 1$ only if i = j.

A *Coxeter diagram* Γ_W for a Coxeter System (*W*, *S*) has *S* as a vertex set and an edge labelled $m_{i,j}$ when $m_{i,j} > 2$.

$$s_i$$
 s_j

Example $W_{B_3} = \left\langle s_1, s_2, s_3 \mid s_1^2 = s_2^2 = s_3^2 = (s_1 s_2)^4 = (s_2 s_3)^3 = (s_1 s_3)^2 = e \right\rangle$ $\Gamma_{B_3} : \underbrace{4}_{s_1} \underbrace{5}_{s_2} \underbrace{5}_{s_3}$

Geometric versions Equivalence + Lattice Hyperplanes

Coxeterian systems

■ Finite Coxeter System (W, S) such that

$$\textit{W} \coloneqq \langle \textit{s} \in \textit{S} \mid (\textit{s}_i\textit{s}_j)^{m_{i,j}} = \textit{e} ext{ for } \textit{s}_i, \textit{s}_j \in \textit{S}
angle$$

where $m_{i,j} \in \mathbb{N}^*$ and $m_{i,j} = 1$ only if i = j.

■ A *Coxeter diagram* Γ_W for a Coxeter System (W, S) has S as a vertex set and an edge labelled $m_{i,j}$ when $m_{i,j} > 2$.

$$s_i$$
 s_j

Geometric versions Equivalence + Lattice Hyperplanes

Coxeterian systems

■ Finite Coxeter System (W, S) such that

$$W := \langle s \in S \mid (s_i s_j)^{m_{i,j}} = e ext{ for } s_i, s_j \in S
angle$$

where $m_{i,j} \in \mathbb{N}^*$ and $m_{i,j} = 1$ only if i = j.

A *Coxeter diagram* Γ_W for a Coxeter System (W, S) has S as a vertex set and an edge labelled $m_{i,j}$ when $m_{i,j} > 2$.

$$s_i$$
 s_j

Example

 $W_{l_2(m)} = \mathcal{D}(m)$, dihedral group of order 2*m*.

$$\Gamma_{l_2(m)}$$
: $m = \frac{m}{s_1 \quad s_2}$

Geometric versions Equivalence + Lattice Hyperplanes

A not so strong order

Let (W, S) be a Coxeter system.

Let $w \in W$ such that $w = s_1 \dots s_n$ for some $s_i \in S$. We say that w has *length* n, $\ell(w) = n$, if n is minimal.

Example

Let
$$\Gamma_{A_2}$$
: $\overset{s}{\bullet} \overset{t}{\bullet}$.
 $\ell(stst) = 2 \text{ as } stst = tstt = ts.$

■ Let the *(right) weak order* be the order \leq_R on the Cayley graph where $\stackrel{W}{\bullet} \stackrel{WS}{\bullet}$ and $\ell(w) < \ell(ws)$.

э.

Geometric versions Equivalence + Lattice Hyperplanes

A not so strong lattice

Theorem (Björner '84)

Let (W, S) be a finite Coxeter system. The weak order is a lattice graded by length.

For finite Coxeter systems, there exists a longest element in the weak order, w_{\circ} .

Geometric versions Equivalence + Lattice Hyperplanes

Parabolic Subgroups

(W, S) a Coxeter system and $I \subseteq S$.

- $W_l = \langle I \rangle$ standard parabolic subgroup (long elt: $w_{\circ,l}$).
- $W' := \{w \in W \mid \ell(w) \le \ell(ws), \text{ for all } s \in I\}$ is the set of min length coset representatives for W/W_I .
- Unique factorization: $w = w' \cdot w_l$ with $w' \in W'$, $w_l \in W_l$.
- By convention in this talk xW_l means $x \in W^l$.

Example

Let
$$\Gamma_W$$
: $\stackrel{r}{\bullet}$ $\stackrel{s}{\bullet}$ $\stackrel{t}{\bullet}$ $\stackrel{u}{\bullet}$ and $I = \{r, t, u\}$.
Then Γ_{W_I} : $\stackrel{r}{\bullet}$ $\stackrel{t}{\bullet}$ $\stackrel{u}{\bullet}$

$$w = rtustr$$
 $w = rts \cdot utr$

Geometric versions Equivalence + Lattice Hyperplanes

So complex

- (W, S) a Coxeter system and $I \subseteq S$.
 - Coxeter complex \mathcal{P}_W complex whose faces are all the standard parabolic cosets of W.

Geometric versions Equivalence + Lattice Hyperplanes

The first stepping stone

Let (W, S) be a finite Coxeter system.

Definition (Krob et.al. '01, type *A*; Palacios, Ronco '06)

The *(right)* facial weak order is the order \leq_F on the Coxeter complex \mathcal{P}_W defined by cover relations of two types:

(1)
$$xW_{l} \leqslant xW_{l\cup\{s\}}$$
 if $s \notin l$ and $x \in W^{l\cup\{s\}}$,

 $(2) \qquad xW_{I} \lessdot xW_{\circ,I}W_{\circ,I \smallsetminus \{s\}}W_{I \smallsetminus \{s\}} \qquad \text{if } s \in I,$

where $I \subseteq S$ and $x \in W^{I}$.

< □ ▶ < 큔 ▶ < 큰 ▶ < 큰 ▶ 30 Aug 2019 29/iii

Geometric versions Equivalence + Lattice Hyperplanes

A Coxeter example

(1) $xW_I < xW_{I \cup \{s\}}$ if $s \notin I$ and $x \in W^{I \cup \{s\}}$ (2) $xW_I < xW_{\circ,I}W_{\circ,I \setminus \{s\}}W_{I \setminus \{s\}}$ if $s \in I$

< □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ 30 Aug 2019

Geometric versions Equivalence + Lattice Hyperplanes

Facial intervals for Coxeter groups

Proposition (Björner, Las Vergas, Sturmfels, White, Ziegler '93)

Let (W, S) be a finite Coxeter system and xW_I a standard parabolic coset. Then there exists a unique interval $[x, xw_{\circ, I}]$ in the weak order such that

 $xW_l = [x, xW_{\circ, l}].$

Geometric versions Equivalence + Lattice Hyperplanes

Facial weak order for Coxeter groups

Definition

Let $\leq_{F'}$ be the order on the Coxeter complex \mathcal{P}_W defined by

$$xW_{I} \leq_{F'} yW_{J} \Leftrightarrow x \leq_{R} y \text{ and } xw_{\circ,I} \leq_{R} yw_{\circ,J}$$

Geometric versions Equivalence + Lattice Hyperplanes

Visiting geometric lands

イロト イヨト イヨト イヨト

Geometric versions Equivalence + Lattice Hyperplanes

A system of roots

- Let \mathcal{A} be a Coxeter arrangement.
- A root system is $\Phi := \{ \pm \alpha_s \in V \mid H_s \in \mathcal{A}, ||\alpha_s|| = 1 \}$
- We have Φ = Φ⁺ ⊔ Φ⁻ decomposable into positive and negative roots.

Geometric versions Equivalence + Lattice Hyperplanes

Inversions

Let (W, S) be a Coxeter system. Define *(left) inversion sets* as the set $\mathbf{N}(w) := \Phi^+ \cap w(\Phi^-)$.

Geometric versions Equivalence + Lattice Hyperplanes

Inversions

Let (W, S) be a Coxeter system. Define *(left) inversion sets* as the set $\mathbf{N}(w) := \Phi^+ \cap w(\Phi^-)$.

Geometric versions Equivalence + Lattice Hyperplanes

Inversions

Let (W, S) be a Coxeter system. Define *(left) inversion sets* as the set $\mathbf{N}(w) := \Phi^+ \cap w(\Phi^-)$.

Geometric versions Equivalence + Lattice Hyperplanes

Inversions

Let (W, S) be a Coxeter system. Define *(left) inversion sets* as the set $\mathbf{N}(w) := \Phi^+ \cap w(\Phi^-)$.

Geometric versions Equivalence + Lattice Hyperplanes

Inversions

Let (W, S) be a Coxeter system. Define *(left) inversion sets* as the set $\mathbf{N}(w) := \Phi^+ \cap w(\Phi^-)$.

Geometric versions Equivalence + Lattice Hyperplanes

Weak order = Inversion sets

Given $w, u \in W$ then $w \leq_R u$ if and only if $\mathbf{N}(w) \subseteq \mathbf{N}(u)$.

< ロ > < 同 > < 回 > < 回 >

Geometric versions Equivalence + Lattice Hyperplanes

Root inversions

Definition (Root Inversion Set)

Let xW_l be a standard parabolic coset. The *root inversion set* is the set

$$\mathbf{R}(xW_l) \coloneqq x(\Phi^- \cup \Phi_l^+)$$

Note that $N(x) = \mathbf{R}(xW_{\varnothing}) \cap \Phi^+$.

F

Geometric versions Equivalence + Lattice Hyperplanes

Root inversions

Example

$$\mathbf{R}(\mathbf{sW}_{\{t\}}) = \mathbf{s}(\Phi^- \cup \Phi^+_{\{t\}})$$

= $\mathbf{s}(\{-\alpha_{\mathbf{s}}, -\alpha_t, -\gamma\} \cup \{\alpha_t\})$
= $\{\alpha_{\mathbf{s}}, -\gamma, -\alpha_t, \gamma\}$

.≣...> (4) 臣

Image: Image:

Geometric versions Equivalence + Lattice Hyperplanes

Root inversions

Example

$$\mathbf{R}(\mathbf{sW}_{\{t\}}) = \mathbf{s}(\Phi^- \cup \Phi^+_{\{t\}})$$

= $\mathbf{s}(\{-\alpha_{\mathbf{s}}, -\alpha_t, -\gamma\} \cup \{\alpha_t\})$
= $\{\alpha_{\mathbf{s}}, -\gamma, -\alpha_t, \gamma\}$

.≣...> (4) 臣

Image: Image:

Geometric versions Equivalence + Lattice Hyperplanes

Root inversions

Example

$$\mathbf{R}(\mathbf{sW}_{\{t\}}) = \mathbf{s}(\Phi^- \cup \Phi^+_{\{t\}})$$

= $\mathbf{s}(\{-\alpha_{\mathbf{s}}, -\alpha_t, -\gamma\} \cup \{\alpha_t\})$
= $\{\alpha_{\mathbf{s}}, -\gamma, -\alpha_t, \gamma\}$

.≣...> (4) 臣

Image: Image:

Geometric versions Equivalence + Lattice Hyperplanes

Root inversions

Example

$$\mathbf{R}(\mathbf{sW}_{\{t\}}) = \mathbf{s}(\Phi^- \cup \Phi^+_{\{t\}})$$

= $\mathbf{s}(\{-\alpha_{\mathbf{s}}, -\alpha_t, -\gamma\} \cup \{\alpha_t\})$
= $\{\alpha_{\mathbf{s}}, -\gamma, -\alpha_t, \gamma\}$

★ E ► ★ E

Geometric versions Equivalence + Lattice Hyperplanes

Root inversions

Proposition (D., Hohlweg, Pilaud '18)

Let xW_1 be a standard parabolic coset of W. Then

inner primal cone $(\mathbf{F}(xW_l)) = \operatorname{cone} (\mathbf{R}(xW_l))$.

Geometric versions Equivalence + Lattice Hyperplanes

Equivalent definitions

Theorem (D., Hohlweg, Pilaud '18)

Let (W, S) be a finite Coxeter system. The following conditions are equivalent for two standard parabolic cosets xW_I and yW_J in the Coxeter complex \mathcal{P}_W

- 1. $xW_I \leq_F yW_J$
- 2. $\mathbf{R}(xW_I) \setminus \mathbf{R}(yW_J) \subseteq \Phi^-$ and $\mathbf{R}(yW_J) \setminus \mathbf{R}(xW_I) \subseteq \Phi^+$.
- 3. $x \leq_R y$ and $xw_{\circ,I} \leq_R yw_{\circ,J}$.

Geometric versions Equivalence + Lattice Hyperplanes

Facial weak order lattice

Theorem (D., Hohlweg, Pilaud '18)

The facial weak order (\mathcal{P}_W, \leq_F) is a lattice with the meet and join of two standard parabolic cosets xW_I and yW_J given by:

 $\begin{array}{l} xW_{I} \wedge yW_{J} = z_{\wedge}W_{K_{\wedge}}, \\ xW_{I} \vee yW_{J} = z_{\vee}W_{K_{\vee}}. \end{array}$

where,

$$\begin{array}{ll} z_{\scriptscriptstyle \wedge} = x \wedge y & \text{and} & K_{\scriptscriptstyle \wedge} = D_L(z_{\scriptscriptstyle \wedge}^{-1}(xw_{\circ, I} \wedge yw_{\circ, J})), \text{ and} \\ z_{\scriptscriptstyle \vee} = xw_{\circ, I} \vee yw_{\circ, J} & \text{and} & K_{\scriptscriptstyle \vee} = D_L(z_{\scriptscriptstyle \vee}^{-1}(x \vee y)) \end{array}$$

Corollary (D., Hohlweg, Pilaud '18)

The weak order is a sublattice of the facial weak order lattice.

A. Dermenjian (UQAM)

The facial weak order in all its glory

30 Aug 2019 3

Geometric versions Equivalence + Lattice Hyperplanes

Example: A_2 and B_2

э

Geometric versions Equivalence + Lattice Hyperplanes

Back to arrangements

A. Dermenjian (UQAM)

The facial weak order in all its glory

イロト イヨト イヨト イヨト

Geometric versions Equivalence + Lattice Hyperplanes

One step at a time

Proposition (D., Hohlweg, McConville, Pilaud, '19+)

The facial weak order in all its glory

30 Aug 2019

43/ummmmmm

Geometric versions Equivalence + Lattice Hyperplanes

Zonotopes

Zonotope Z_A is the convex polytope:

$$Z_{\mathcal{A}} \coloneqq \left\{ v \in V \mid v = \sum_{i=1}^{k} \lambda_i e_i, \text{ such that } |\lambda_i| \le 1 \text{ for all } i \right\}$$

Theorem (Edelman '84, McMullen '71)

There is a bijection between \mathscr{F}_A and the nonempty faces of Z_A given by the map

$$\tau(F) = \left\{ v \in V \mid v = \sum_{F(H_i)=0} \lambda_i e_i + \sum_{F(H_j)\neq 0} \mu_j e_j \right\}$$

where $|\lambda_i| \le 1$ for all i and $\mu_j = F(H_j)$

Geometric versions Equivalence + Lattice Hyperplanes

Zonotope example

A. Dermenjian (UQAM)	The facial weak order in all its glory	30 Aug 2

≣ ▶ 📱 ∽ी९(45/ummmmmm...

∃ ► < ∃ ►</p>

A B + A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Geometric versions Equivalence + Lattice Hyperplanes

Root inversions for arrangements

• roots
$$\Phi_{\mathcal{A}} \coloneqq \{\pm e_1, \pm e_2, \dots, \pm e_k\}$$

root inversion set

 $\mathbf{R}(F) := \{ e \in \Phi_{\mathcal{A}} \mid \langle x, e \rangle \leq 0 \text{ for some } x \in \operatorname{int}(F) \}.$

< 17 ▶

Geometric versions Equivalence + Lattice Hyperplanes

Root inversions for arrangements

Proposition (D., Hohlweg, McConville, Pilaud '19+)

Let F be a face. Then

inner primal cone
$$(\tau(F)) = \operatorname{cone}(\mathbf{R}(F))$$
.

Geometric versions Equivalence + Lattice Hyperplanes

Covectors

- covector a vector in {-,0,+}^A with signs relative to hyperplanes.
- $\mathcal{L} \subseteq \{-, \mathbf{0}, +\}^{\mathcal{A}}$ set of covectors

Example

$$F_4(H_1) = +; \ F_4(H_2) = 0; \ F_4(H_3) = - \qquad F_4 \leftrightarrow (+, 0, -)$$

47/hello?

Geometric versions Equivalence + Lattice Hyperplanes

Covectors

- covector a vector in {-,0,+}^A with signs relative to hyperplanes.
- $\mathcal{L} \subseteq \{-, 0, +\}^{\mathcal{A}}$ set of covectors

Example

$$F_4(H_1) = +; \ F_4(H_2) = 0; \ F_4(H_3) = - \qquad F_4 \leftrightarrow (+, 0, -)$$

$$\begin{array}{c} H_{1} & H_{3} \\ (0,-,-) & (-,-,-) & (-,-,0) \\ (+,-,-) & (-,-,+) \\ (+,0,-) & -\theta_{3} & -\theta_{2} \\ (+,+,-) & (-,-,+) \\ H_{2} & \theta_{3} \\ (+,+,-) & (0,+,+) \\ (+,+,0) & (+,+,+) \end{array}$$

< 日 > < 同 > < 回 > < 回 > < □ > <

47/hello?

э.

Geometric versions Equivalence + Lattice Hyperplanes

Covector Definition

Definition

For $X, Y \in \mathcal{L}$:

 $X \leq_{\mathcal{L}} Y \Leftrightarrow X(H) \geq Y(H) \quad \forall H \text{ with } - < 0 < +$

크

48/hello?

・ロト ・ 四ト ・ ヨト ・ ヨト

Geometric versions Equivalence + Lattice Hyperplanes

Equivalent definitions

Theorem (D., Hohlweg, McConville, Pilaud '19+)

Let \mathcal{A} be a hyperplane arrangement. For $F, G \in \mathscr{F}_{\mathcal{A}}$ the following are equivalent:

- $m_F \leq_{PR} m_G$ and $M_F \leq_{PR} M_G$ in poset of regions $PR(\mathcal{A}, B)$.
- There exists a chain of covers in FW(A, B) such that

$$F = F_1 \lessdot F_2 \lessdot \cdots \lessdot F_n = G$$

■ $F \leq_{\mathcal{L}} G$ in terms of covectors $(F(H) \geq G(H) \forall H \in A)$ ■ $\mathbf{R}(F) \setminus \mathbf{R}(G) \subseteq \Phi_A^-$ and $\mathbf{R}(G) \setminus \mathbf{R}(F) \subseteq \Phi_A^+$.

= nar

49/hello?

< 日 > < 同 > < 回 > < 回 > < □ > <

Geometric versions Equivalence + Lattice Hyperplanes

Facial weak order lattice

Theorem (D., Hohlweg, McConville, Pilaud '19+)

The facial weak order FW(A, B) is a lattice when PR(A, B) is a lattice.

Corollary (D., Hohlweg, McConville, Pilaud '19+)

The lattice of regions is a sublattice of the facial weak order lattice when A is simplicial.

э.

50/hello?

イロト イポト イヨト イヨト

Properties of the FWO

A. Dermenjian (UQAM)

The facial weak order in all its glory

< □ > < 급 > < 클 > < 클 > < 클 > 30 Aug 2019 51/w/

19 51/we almo

Semi-distributive duality

- The *dual* of a poset *P* is the poset P^{op} where $x \le y$ in *P* iff $y \le x$ in P^{op} . A poset is *self-dual* if $P \cong P^{op}$.
- A lattice is *semi-distributive* if $x \lor y = x \lor z$ implies $x \lor y = x \lor (y \land z)$ and similarly for the meets.

Theorem (D., Hohlweg, McConville, Pilaud '19+)

The facial weak order FW(A, B) is self-dual. If furthermore, A is simplicial, FW(A, B) is a semi-distributive lattice.

30 Aug 2019

イロト 不得 トイヨト イヨト

Join-irreducible elements

An element is *join-irreducible* if and only if it covers exactly one element.

Proposition (D., Hohlweg, McConville, Pilaud '19+)

If \mathcal{A} is a simplicial arrangement and F a face with facial interval $[m_F, M_F]$. Then F is join-irreducible in $FW(\mathcal{A}, B)$ if and only if M_F is join-irreducible in $PR(\mathcal{A}, B)$ and $codim(F) \in \{0, 1\}$

Proposition (D., Hohlweg, Pilaud '18)

Let (W, S) be a finite Coxeter system. A standard parabolic coxet xW_1 is join-irreducible in the facial weak order if and only if we have one of the two following cases

- I = \emptyset and x is join-irreducible in the right weak order, or
- I = $\{s\}$ and xs is join-irreducible in the right weak order.

Properties

Möbius function

Recall that the *Möbius function* of a poset (P, \leq) is the function $\mu : P \times P \rightarrow \mathbb{Z}$ defined inductively by

$$\mu(x, y) := \begin{cases} 1 & \text{if } x = y, \\ -\sum_{x \le z < y} \mu(x, z) & \text{if } x < y, \\ 0 & \text{otherwise.} \end{cases}$$

Proposition (D., Hohlweg, Pilaud '18)

The Möbius function of the facial weak order of a finite Coxeter system (W, S) is given by

$$\mu(eW_{\varnothing}, yW_J) = \begin{cases} (-1)^{|J|}, & \text{if } y = e, \\ 0, & \text{otherwise.} \end{cases}$$

Properties

Möbius function

Recall that the *Möbius function* of a poset (P, \leq) is the function $\mu : P \times P \rightarrow \mathbb{Z}$ defined inductively by

$$\mu(x,y) := \begin{cases} 1 & \text{if } x = y, \\ -\sum_{x \le z < y} \mu(x,z) & \text{if } x < y, \\ 0 & \text{otherwise.} \end{cases}$$

Proposition (D., Hohlweg, McConville, Pilaud '19+)

Let X and Y be faces of A such that $X \leq Y$ and let $Z = X \cap Y$.

$$\mu(X, Y) = \begin{cases} (-1)^{\mathsf{rk}(X) + \mathsf{rk}(Y)} & \text{if } X \leq Z \leq Y \text{ and } Z = X_{-Z} \cap Y \\ 0 & \text{otherwise} \end{cases}$$

30 Aug 2019

Further Works

- Can we explicitly state the join/meet of two elements for hyperplane arrangements?
- When is the facial weak order congruence uniform?
- How many maximal chains are there?
- What is the order dimension?
- Can we generalize this to polytopes?

30 Aug 2019

57/DONE!!

æ