The facial weak order in hyperplane arrangements

Aram Dermenjian^{1,3}

Christophe Hohlweg¹, Thomas McConville² and Vincent Pilaud³

¹Université du Québec à Montréal (UQAM) ²Mathematical Sciences Research Institute (MSRI) ³École Polytechnique (LIX)

10 May 2019

On this day in 1847 Wilhelm Killing was born.

イロト イポト イラト イラ

Outline

Arranging hyperplanes.

■ The facial weak order and its +, 2, 3, 4 (!) definitions.

Yeah, but is it a lattice?

Some other properties.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

History and Background - Hyperplanes

- $(V, \langle \cdot, \cdot \rangle)$ *n*-dim real Euclidean vector space.
- A hyperplane H_i is codim 1 subspace of V with normal e_i .

History and Background - Arrangements

- A hyperplane arrangement is $\mathcal{A} = \{H_1, H_2, \dots, H_k\}$.
- \mathcal{A} is *central* if $\{0\} \subseteq \bigcap \mathcal{A}$.
- Central \mathcal{A} is *essential* if $\{0\} = \bigcap \mathcal{A}$.

Example

History and Background - Arrangements

Regions R_A - connected components of V without A.
 Faces F_A - intersections of closures of some regions.

∃ >

Background Hype Facial Weak Order Pose Properties Motiv

Hyperplane Arrangements Poset of Regions Motivation

History and Background - (Partial) Orders

 Lattice - poset where every two elements have a meet (greatest lower bound) and join (least upper bound).

Example

- The lattice $(\mathbb{N}, |)$ where $a \leq b \Leftrightarrow a | b$.
 - meet greatest common divisor
 - join least common multiple

History and Background - Poset of regions

- **Base region** $B \in \mathscr{R}_A$ some fixed region
- Separation set for $R \in \mathscr{R}_A$

History and Background - Poset of regions

- **Base region** $B \in \mathscr{R}_A$ some fixed region
- Separation set for $R \in \mathscr{R}_A$

History and Background - Poset of regions

- **Base region** $B \in \mathscr{R}_A$ some fixed region
- Separation set for $R \in \mathscr{R}_A$

History and Background - Poset of regions

- **Base region** $B \in \mathscr{R}_A$ some fixed region
- Separation set for $R \in \mathscr{R}_A$

History and Background - Poset of regions

- **Base region** $B \in \mathscr{R}_A$ some fixed region
- Separation set for $R \in \mathscr{R}_A$ $S(R) := \{H \in \mathcal{A} \mid H \text{ separates } R \text{ from } B\}$
- Poset of Regions PR(A, B) where $R \leq_{PR} R' \Leftrightarrow S(R) \subseteq S(R')$ H_1 H_2 H_2 H_2 H_3 H_1 H_1 H_1

Ø

History and Background - Poset of regions

- A region R is simplicial if normal vectors for boundary hyperplanes are linearly independent.
- \mathcal{A} is *simplicial* if all $\mathcal{R}_{\mathcal{A}}$ simplicial.

Example

Background Hyperpla Facial Weak Order Poset of I Properties Motivation

Hyperplane Arrangements Poset of Regions Motivation

History and Background - Poset of regions

Theorem (Björner, Edelman, Zieglar '90)

If A is simplicial then PR(A, B) is a lattice for any $B \in \mathscr{R}_A$. If PR(A, B) is a lattice then B is simplicial.

Example

Background Hyperpla Facial Weak Order Poset of Properties Motivatio

Hyperplane Arrangements Poset of Regions Motivation

History and Background - Poset of regions

Theorem (Björner, Edelman, Zieglar '90)

If A is simplicial then PR(A, B) is a lattice for any $B \in \mathscr{R}_A$. If PR(A, B) is a lattice then B is simplicial.

Hyperplane Arrangements Poset of Regions Motivation

Coxeter Arrangements

Example

A *Coxeter arrangement* is the hyerplane arrangement associated to a Coxeter group.

Coxeter Groups

- Reflecting hyperplanes \leftrightarrow
 - Root system $\ \leftrightarrow$
 - Inversion sets \leftrightarrow
 - Weak order

Hyperplane Arrangements

- Hyperplane arrangement
- Normals to hyperplanes
- Seperation sets
 - Poset of regions

 \leftrightarrow

Motivation

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order of Coxeter groups to an order on all the faces of its associated arrangement for type A (aka Braid arrangement).
- In 2006, Palacios and Ronco extended this new order to Coxeter groups of all types using cover relations.
- In 2016, D, Hohlweg and Pilaud showed this extension has a global equivalent and produces a lattice in Coxeter arrangements.

Motivation

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order of Coxeter groups to an order on all the faces of its associated arrangement for type A (aka Braid arrangement).
- In 2006, Palacios and Ronco extended this new order to Coxeter groups of all types using cover relations.
- In 2016, D, Hohlweg and Pilaud showed this extension has a global equivalent and produces a lattice in Coxeter arrangements.
- Questions: Can we extend this to hyperplane arrangements? Can we find both local and global definitions? When do we actually get a lattice?

Background Facial Intervals Facial Weak Order Properties Lattice

All the definitions!

Facial Intervals

Proposition (Björner, Las Vergas, Sturmfels, White, Ziegler '93)

Let \mathcal{A} be central with base region \mathcal{B} . For every $\mathcal{F} \in \mathscr{F}_{\mathcal{A}}$ there is a unique interval $[m_F, M_F]$ in PR(\mathcal{A}, B) such that $[m_F, M_F] = \left\{ R \in \mathscr{R}_A \mid F \subseteq \overline{R} \right\}$

Facial Weak Order

Let \mathcal{A} be a central hyperplane arrangement and B a base region in $\mathscr{R}_{\mathcal{A}}$.

Definition

The *facial weak order* is the order FW(A, B) on \mathscr{F}_A where for $F, G \in \mathscr{F}_A$:

 $F \leq G \Leftrightarrow m_F \leq_{\operatorname{PR}} m_G$ and $M_F \leq_{\operatorname{PR}} M_G$

A. Dermenjian (UQÀM)

The facial weak order in hyperplane arrangements

10 May 2010

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A. Dermenjian (UQÀM)

The facial weak order in hyperplane arrangements

10 May 2019 14/

The facial weak order in hyperplane arrangements

10 May 2019 15/1

Background Facial Facial Weak Order All the Properties Lattice

Facial Intervals All the definitions! Lattice

Cover Relations

Proposition (D., Hohlweg, McConville, Pilaud, '19+)

0 May 2019

16/Ack(100, 100)

Covectors

- *covector* a vector in {-,0,+}^A with signs relative to hyperplanes.
- $\mathcal{L} \subseteq \{-, 0, +\}^{\mathcal{A}}$ set of covectors

Example

$$F_4 \leftrightarrow (+,0,-)$$
 $F_4(H_1) = +;$ $F_4(H_2) = 0;$ $F_4(H_3) = -$

ts 10 May 20

17/Ack(100, 10

Covectors

- covector a vector in {-,0,+}^A with signs relative to hyperplanes.
- $\mathcal{L} \subseteq \{-, \mathbf{0}, +\}^{\mathcal{A}}$ set of covectors

Example

$$F_4 \leftrightarrow (+,0,-)$$
 $F_4(H_1) = +;$ $F_4(H_2) = 0;$ $F_4(H_3) = -$

10 May 20⁻

9 17/Ack(100, 100)

Covector operations For $X, Y \in \mathcal{L} \subseteq \{-, 0, +\}^{\mathcal{A}}$ Composition: $(X \circ Y)(H) = \begin{cases} Y(H) & \text{if } X(H) = 0 \\ X(H) & \text{otherwise} \end{cases}$ Reorientation: $(X_{-Y})(H) = \begin{cases} -X(H) & \text{if } Y(H) = 0 \\ X(H) & \text{otherwise} \end{cases}$

$$\star$$
 For $F \in \mathscr{F}_{\mathcal{A}}, [m_F, M_F] = [F \circ B, F \circ -B]$

Example

Let
$$\mathcal{A} = \{H_1, H_2, H_3, H_4, H_5\}.$$

 $X = (-, 0, +, +, 0)$ $Y = (0, 0, -, 0, +)$

Then

$$X \circ Y = (-, 0, +, +, +)$$
 $X_{-Y} = (+, 0, +, -, 0)$

A. Dermenjian (UQÀM)

The facial weak order in hyperplane arrangements

Covector Definition

Definition

For $X, Y \in \mathcal{L}$:

 $X \leq_{\mathcal{L}} Y \Leftrightarrow X(H) \geq Y(H) \quad \forall H \text{ with } - < 0 < +$

0 May 2019 19

9/Ack(100, 100

Zonotopes

Zonotope Z_A is the convex polytope:

$$Z_{\mathcal{A}} \coloneqq \left\{ v \in V \mid v = \sum_{i=1}^{k} \lambda_i e_i, \text{ such that } |\lambda_i| \le 1 \text{ for all } i \right\}$$

Theorem (Edelman '84, McMullen '71)

There is a bijection between \mathscr{F}_A and the nonempty faces of Z_A given by the map

$$\tau(F) = \left\{ v \in V \mid v = \sum_{F(H_i)=0} \lambda_i e_i + \sum_{F(H_j)\neq 0} \mu_j e_j \right\}$$

where $|\lambda_i| \le 1$ for all i and $\mu_j = F(H_j)$

19 20/Ack(100, 100)

Zonotope - Construction example

019 21/Ack(

Zonotope - Construction example

21/Ack(100, 100

Zonotope - Construction example

21/Ack(100, 1

Zonotope - Construction example

21/Ack(100, 100

Zonotope - Construction example

21/Ack(100,100

Zonotope - Construction example

A. Dermenjian (UQÀM)

The facial weak order in hyperplane arrangements 10 May 2019 2

▶ ≣ ∽ 21/Ack(100,100

Root inversion sets

- roots $\Phi_{\mathcal{A}} \coloneqq \{\pm e_1, \pm e_2, \dots, \pm e_k\}$
- root inversion set

 ${f R}({\it F})\coloneqq \{{\it e}\in \Phi_{\cal A}\mid \ \langle {\it x}, {\it e}
angle \le 0 \ {
m for some} \ {\it x}\in {\it F}\}.$

All the definitions!

Equivalent definitions

Theorem (D., Hohlweg, McConville, Pilaud '19+)

For $F, G \in \mathscr{F}_A$ the following are equivalent:

- \blacksquare $m_F \leq_{PR} m_G$ and $M_F \leq_{PR} M_G$ in poset of regions $PR(\mathcal{A}, B)$.
- There exists a chain of covers in FW(A, B) such that

$$F = F_1 \lessdot F_2 \lessdot \cdots \lessdot F_n = G$$

• $F \leq_{\mathcal{L}} G$ in terms of covectors $(F(H) > G(H) \forall H \in \mathcal{A})$ **R**(*F*)**R**(*G*) $\subseteq \Phi_{A}^{-}$ and **R**(*G*)**R**(*F*) $\subseteq \Phi_{A}^{+}$.

-

A. Dermenjian (UQÀM)

The facial weak order in hyperplane arrangements

10 May 2019 24/a lot

Facial weak order lattice

Theorem (D., Hohlweg, McConville, Pilaud '19+)

The facial weak order FW(A, B) is a lattice when A is simplicial.

Corollary (D., Hohlweg, McConville, Pilaud '19+)

The lattice of regions is a sublattice of the facial weak order lattice when A is simplicial.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lattice proof - Joins

Proof uses two key components :

Lemma (Björner, Edelman, Zieglar '90)

1: If L is a finite, bounded poset such that $x \lor y$ exists whenever x and y both cover some $z \in L$, then L is a lattice.

2: Cover relation: Z < X iff $Z \le X$, $|\dim X - \dim Z| = 1$ and $X \subseteq Z$ or $Z \subseteq X$. Then Z < X and Z < Y gives three cases:

1. $X \cup Y \subseteq Z$ and dim $X = \dim Y = \dim Z - 1$,

2. $Z \subseteq X \cap Y$ and dim $X = \dim Y = \dim Z + 1$, and

3. $X \subseteq Z \subseteq Y$ and dim $X = \dim Z - 1 = \dim Y - 2$.

イロト 不得 トイヨト イヨト

A. Dermenjian (UQÀM)

The facial weak order in hyperplane arrangements

A. Dermenjian (UQÀM)

The facial weak order in hyperplane arrangements

イロト イヨト イヨト イヨト

Properties Further Works

Properties of the facial weak order

- The *dual* of a poset *P* is the poset P^{op} where $x \le y$ in *P* iff $y \le x$ in P^{op} . A poset is *self-dual* if $P \cong P^{op}$.
- A lattice is *semi-distributive* if $x \lor y = x \lor z$ implies $x \lor y = x \lor (y \land z)$ and similarly for the meets.

Theorem (D., Hohlweg, McConville, Pilaud '19+)

The facial weak order FW(A, B) is self-dual. If furthermore, A is simplicial, FW(A, B) is a semi-distributive lattice.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Properties Further Works

Join-irreducible elements

An element is *join-irreducible* if and only if it covers exactly one element.

Proposition (D., Hohlweg, McConville, Pilaud '19+)

If A is simplicial and F a face with facial interval $[m_F, M_F]$. Then F is join-irreducible in FW(A, B) if and only if M_F is join-irreducible in PR(A, B) and codim(F) $\in \{0, 1\}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Properties Further Works

Möbius function

Recall that the Möbius function is given by:

$$\mu(x, y) = \begin{cases} 1 & \text{if } x = y \\ -\sum_{x \le z < y} \mu(x, z) & \text{if } x < y \\ 0 & \text{otherwise} \end{cases}$$

Proposition (D., Hohlweg, McConville, Pilaud '19+)

Let X and Y be faces such that $X \leq Y$ and let $Z = X \cap Y$.

$$\mu(X, Y) = \begin{cases} (-1)^{\mathsf{rk}(X) + \mathsf{rk}(Y)} & \text{if } X \leq Z \leq Y \text{ and } Z = X_{-Z} \cap Y \\ 0 & \text{otherwise} \end{cases}$$

Properties Further Works

Further Works

Can we explicitly state the join/meet of two elements?

When is the facial weak order congruence uniform?

Can we generalize this to polytopes?

★ ∃ > < ∃ >

Properties Further Works

Thank you!

æ

イロト イヨト イヨト イヨト