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Background Facial Weak Order Properties Hyperplane Arrangements
Poset of Regions

Motivation

History and Background - Hyperplanes

(V , 〈·, ·〉) - n-dim real Euclidean vector space.
A hyperplane H is codim 1 subspace of V with normal eH .

Example
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Background Facial Weak Order Properties Hyperplane Arrangements
Poset of Regions

Motivation

History and Background - Arrangements
A hyperplane arrangement is A = {H1,H2, . . . ,Hk}.
A is central if {0} ⊆

⋂
A.

Central A is essential if {0} =
⋂
A.

Example

Not central Central
Not essential

Central
Essential
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Background Facial Weak Order Properties Hyperplane Arrangements
Poset of Regions

Motivation

History and Background - Arrangements

Regions RA - connected components of V without A.
Faces FA - intersections of closures of some regions.
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Background Facial Weak Order Properties Hyperplane Arrangements
Poset of Regions

Motivation

History and Background - Poset of regions
Base region B ∈ RA - some fixed region
Separation set for R ∈ RA
S(R) := {H ∈ A | H separates R from B}

Poset of Regions PR(A,B) where
R ≤PR R′ ⇔ S(R) ⊆ S(R′)

H3H1

H2
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R4

R5

R2
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Background Facial Weak Order Properties Hyperplane Arrangements
Poset of Regions

Motivation

History and Background - Poset of regions
A region R is simplicial if normal vectors for boundary
hyperplanes are linearly independent.
A is simplicial if all RA simplicial.

Example

Simplicial Not simplicial
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Background Facial Weak Order Properties Hyperplane Arrangements
Poset of Regions

Motivation

History and Background - Poset of regions

Theorem (Björner, Edelman, Ziegler ’90)

If A is simplicial then PR(A,B) is a lattice for any B ∈ RA. If
PR(A,B) is a lattice then B is simplicial.

Example
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Background Facial Weak Order Properties Hyperplane Arrangements
Poset of Regions

Motivation

Motivation

2001: Krob, Latapy, Novelli, Phan, and
Schwer extended the weak order of
type A Coxeter groups to all the faces
of its associated arrangement.
2006: Palacios and Ronco extended
this new order to Coxeter groups of all
types using cover relations.
2016: D, Hohlweg and Pilaud gave a
global equivalent to this extension and
showed it’s a lattice.

Questions: Can we extend this to
hyperplane arrangements? Can we
find both local and global definitions?
When do we actually get a lattice?
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Background Facial Weak Order Properties Facial Intervals
All the definitions!

Lattice

Facial Intervals

Proposition (Björner, Las Vergas, Sturmfels, White, Ziegler ’93)

Let A be central with base region B. For every F ∈ FA there is
a unique interval [mF ,MF ] in PR(A,B) such that
[mF ,MF ] =

{
R ∈ RA | F ⊆ R

}
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Background Facial Weak Order Properties Facial Intervals
All the definitions!

Lattice

Facial Weak Order
Let A be a central hyperplane arrangement and B a base
region in RA.

Definition

The facial weak order is the order FW(A,B) on FA where for
F ,G ∈ FA:

F ≤ G⇔ mF ≤PR mG and MF ≤PR MG

mF

MF mG

MG
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Background Facial Weak Order Properties Facial Intervals
All the definitions!

Lattice

Facial Weak Order - Example
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Background Facial Weak Order Properties Facial Intervals
All the definitions!

Lattice

Cover Relations
Proposition (D., Hohlweg, McConville, Pilaud, ’19+)

For F ,G ∈ FA if
1. F ≤ G in FW(A,B)
2. |dim(F )− dim(G)| = 1
3. F ⊆ G or G ⊆ F

then F <· G.

F0

F1

F2F3

F4

F5
R0

R1

R2

R3

R4

R5

F1

F2F3

F4

F5 F0
B

R1

R2

R3

R4

R5

0

A. Dermenjian (UQÀM) The facial weak order in hyperplane arrangements 8 Aug 2019 13/1010



Background Facial Weak Order Properties Facial Intervals
All the definitions!

Lattice

Covectors
covector - a vector in {−,0,+}A with signs relative to
hyperplanes.
L ⊆ {−,0,+}A - set of covectors

Example

F4 ↔ (+,0,−) F4(H1) = +; F4(H2) = 0; F4(H3) = −
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Background Facial Weak Order Properties Facial Intervals
All the definitions!

Lattice

Covector Definition
Definition

For X ,Y ∈ L:

X ≤L Y ⇔ X (H) ≥ Y (H) ∀H with − < 0 < +
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Background Facial Weak Order Properties Facial Intervals
All the definitions!

Lattice

Zonotopes
Zonotope ZA is the convex polytope:

ZA :=

v ∈ V | v =
k∑

i=1

λiei , such that |λi | ≤ 1 for all i


Theorem (Edelman ’84, McMullen ’71)

There is a bijection between FA and the nonempty faces of ZA
given by the map

τ(F ) =

v ∈ V | v =
∑

F (Hi )=0

λiei +
∑

F (Hj ) 6=0

µjej


where |λi | ≤ 1 for all i and µj = F (Hj)
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Background Facial Weak Order Properties Facial Intervals
All the definitions!

Lattice

Zonotope - Construction example
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Background Facial Weak Order Properties Facial Intervals
All the definitions!

Lattice

Root inversion sets
roots ΦA := {±e1,±e2, . . . ,±ek}
root inversion set
R(F ) := {e ∈ ΦA | 〈x ,e〉 ≤ 0 for some x ∈ F}.
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Background Facial Weak Order Properties Facial Intervals
All the definitions!

Lattice

Equivalent definitions

Theorem (D., Hohlweg, McConville, Pilaud ’19+)

For F ,G ∈ FA the following are equivalent:
mF ≤PR mG and MF ≤PR MG in poset of regions PR(A,B).
There exists a chain of covers in FW(A,B) such that

F = F1 <· F2 <· · · · <· Fn = G

F ≤L G in terms of covectors (F (H) ≥ G(H) ∀H ∈ A)
R(F )\R(G) ⊆ Φ−A and R(G)\R(F ) ⊆ Φ+

A.
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Background Facial Weak Order Properties Facial Intervals
All the definitions!

Lattice

Warning!
Next slide contains a lot of data. . . please procede with caution.
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Background Facial Weak Order Properties Facial Intervals
All the definitions!

Lattice

Equivalence for type A2 Coxeter arrangement

mF ≤PR mG
MF ≤PR MG
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Background Facial Weak Order Properties Facial Intervals
All the definitions!

Lattice

Facial weak order lattice

Theorem (D., Hohlweg, McConville, Pilaud ’19+)

The facial weak order FW(A,B) is a lattice when A is simplicial.

Corollary (D., Hohlweg, McConville, Pilaud ’19+)

The lattice of regions is a sublattice of the facial weak order
lattice when A is simplicial.
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Background Facial Weak Order Properties Facial Intervals
All the definitions!

Lattice

Example: B3 Coxeter arrangement
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Properties of the facial weak order

Theorem (D., Hohlweg, McConville, Pilaud ’19+)

FW(A,B) is self-dual.
A simplicial implies FW(A,B) is semi-distributive.
A simplicial and X ∈ FA then X is join-irreducible in
FW(A,B) if and only if MX is join-irreducible in PR(A,B)
and codim(X ) ∈ {0,1}
Möbius function: X ,Y ∈ FA let Z = X ∩ Y.

µ(X ,Y ) =
{

(−1)rk(X)+rk(Y ) if X ≤ Z ≤ Y and Z = X−Z ∩ Y
0 otherwise
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Background Facial Weak Order Properties Properties Further Works

Further Works

Can we explicitly state the join/meet of two elements?

When is the facial weak order congruence uniform?

How many maximal chains are there?

What is the order dimension?

Can we generalize this to polytopes?
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Thank you!
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