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Background
Facial Weak Order

Properties

Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Hyperplanes

(V , 〈·, ·〉) - n-dim real Euclidean vector space.
A hyperplane Hi is codim 1 subspace of V with normal ei .

Example
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Background
Facial Weak Order

Properties

Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Arrangements

A hyperplane arrangement is A = {H1,H2, . . . ,Hk}.
A is central if {0} ⊆

⋂
A.

Central A is essential if {0} =
⋂
A.

Example
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Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Arrangements

Regions R - connected components of V without A.
Faces FA - intersections of closures of some regions.
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Properties

Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - (Partial) Orders
Lattice - poset where every two elements have a meet
(greatest lower bound) and join (least upper bound).

Example

The lattice (N, |) where a ≤ b ⇔ a |b.
meet - greatest common divisor
join - least common multiple
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Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Poset of regions
Base region B ∈ R - some fixed region
Separation set for R ∈ R
S(R) := {H ∈ A | H separates R from B}

Poset of Regions (R,B,≤A) where
R ≤A R′ ⇔ S(R) ⊆ S(R′)
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Background
Facial Weak Order

Properties

Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Poset of regions
A region R is simplicial if normal vectors for boundary
hyperplanes are linearly independent.
A is simplicial if all R simplicial.

Example
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Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Poset of regions

Theorem (Björner, Edelman, Zieglar ’90)

If A is simplicial then (R,B,≤A) is a lattice for any B ∈ R. If
(R,B,≤A) is a lattice then B is simplicial.

Example
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Facial Weak Order

Properties

Hyperplane Arrangements
Poset of Regions
Motivation

Coxeter Arrangements

Example

A Coxeter arrangement is the hyerplane arrangement
associated to a Coxeter group.

Coxeter Groups Hyperplane Arrangements
Reflecting hyperplanes ↔ Hyperplane arrangement

Root system ↔ Normals to hyperplanes
Inversion sets ↔ Seperation sets

Weak order ↔ Poset of regions
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Hyperplane Arrangements
Poset of Regions
Motivation

Motivation

In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended
the weak order of Coxeter groups to an order on all the
faces of its associated arrangement for type A.
In 2006, Palacios and Ronco extended this new order to
Coxeter groups of all types using cover relations.
In 2016, D, Hohlweg and Pilaud showed this extension has
a global equivalent and produces a lattice in Coxeter
arrangements.

Questions: Can we extend this to hyperplane
arrangements? Can we find both local and global
definitions? When do we actually get a lattice?
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Facial Weak Order

Properties

Facial Intervals
All the definitions!
Lattice

Facial Intervals
Proposition (Björner, Las Vergas, Sturmfels, White, Ziegler ’93)

Let A be central with base region B. For every F ∈ FA there is
a unique interval [mF ,MF ] in (R,B,≤A) such that
[mF ,MF ] =

{
R ∈ R | F ⊆ R

}
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Background
Facial Weak Order

Properties

Facial Intervals
All the definitions!
Lattice

Facial Weak Order

Let A be a central hyperplane arrangement and B a base
region in R.

Definition

The facial weak order is the order FW(A,B) on FA where for
F ,G ∈ F :

F ≤ G⇔ mF ≤A mG and MF ≤A MG
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Facial Weak Order - Example
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Facial Weak Order

Properties

Facial Intervals
All the definitions!
Lattice

Cover Relations
Proposition (D., Hohlweg, McConville, Pilaud, ’18+)

For F ,G ∈ FA if
1. F ≤ G in FW(A,B)
2. |dim(F )− dim(G)| = 1
3. F ⊆ G or G ⊆ F

then F <· G.
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Facial Weak Order

Properties

Facial Intervals
All the definitions!
Lattice

Covectors
covector - a vector in {−,0,+}A with signs relative to
hyperplanes.
L ⊆ {−,0,+}A - set of covectors

Example

F4 ↔ (+,0,−) F4(H1) = +; F4(H2) = 0; F4(H3) = −

−e1
−e2−e3

e1 e2
e3

H3H1

H2

F0

F1

F2F3

F4

F5
B

R1

R2

R3

R4

R5

A. Dermenjian (UQÀM) The facial weak order in hyperplane arrangements 6 Apr 2019 16/a lot



Background
Facial Weak Order

Properties

Facial Intervals
All the definitions!
Lattice

Covectors
covector - a vector in {−,0,+}A with signs relative to
hyperplanes.
L ⊆ {−,0,+}A - set of covectors

Example

F4 ↔ (+,0,−) F4(H1) = +; F4(H2) = 0; F4(H3) = −

−e1
−e2−e3

e1 e2
e3

H3H1

H2

(0, +, +)

(−, 0, +)

(−,−, 0)(0,−,−)

(+, 0,−)

(+, +, 0)
(+, +, +)

(−, +, +)

(−,−, +)

(−,−,−)

(+,−,−)

(+, +,−)

A. Dermenjian (UQÀM) The facial weak order in hyperplane arrangements 6 Apr 2019 16/a lot



Background
Facial Weak Order

Properties

Facial Intervals
All the definitions!
Lattice

Covector Definition
Definition

For X ,Y ∈ L:

X ≤L Y ⇔ Y (H) ≤ X (H) with − < 0 < +
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Facial Weak Order

Properties

Facial Intervals
All the definitions!
Lattice

Zonotopes
Zonotope ZA is the convex polytope:

ZA :=

v ∈ V | v =
k∑

i=1

λiei , such that |λi | ≤ 1 for all i


Theorem (Edelman ’84, McMullen ’71)

There is a bijection between FA and the nonempty faces of ZA
given by the map

τ(F ) =

v ∈ V | v =
∑

F (Hi )=0

λiei +
∑

F (Hj ) 6=0

µjej


where |λi | ≤ 1 for all i and µj = F (Hj)
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Properties

Facial Intervals
All the definitions!
Lattice

Zonotope - Construction example
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Facial Weak Order

Properties

Facial Intervals
All the definitions!
Lattice

Root inversion sets
roots ΦA := {±e1,±e2, . . . ,±ek}
root inversion set
R(F ) := {e ∈ ΦA | 〈x ,e〉 ≤ 0 for some x ∈ F}.
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Facial Weak Order

Properties

Facial Intervals
All the definitions!
Lattice

Equivalent definitions

Theorem (D., Hohlweg, McConville, Pilaud ’18+)

For F ,G ∈ FA the following are equivalent:
mF ≤A mG and MF ≤A MG in poset of regions (R,B,≤A).
There exists a chain of covers in FW(A,B) such that

F = F1 <· F2 <· · · · <· Fn = G

F ≤L G in terms of covectors (G(H) ≤ F (H) ∀H ∈ A)
R(F )\R(G) ⊆ Φ−A and R(G)\R(F ) ⊆ Φ+

A.
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Properties

Facial Intervals
All the definitions!
Lattice

Equivalence for type A2 Coxeter arrangement

mF ≤A mG
MF ≤A MG
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Facial Weak Order

Properties

Facial Intervals
All the definitions!
Lattice

Facial weak order lattice

Theorem (D., Hohlweg, McConville, Pilaud ’18+)

The facial weak order FW(A,B) is a lattice when A is simplicial.

Corollary (D., Hohlweg, McConville, Pilaud ’18+)

The lattice of regions is a sublattice of the facial weak order
lattice when A is simplicial.

A. Dermenjian (UQÀM) The facial weak order in hyperplane arrangements 6 Apr 2019 23/ℵ0



Background
Facial Weak Order

Properties

Facial Intervals
All the definitions!
Lattice

Example: B3 Coxeter arrangement
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Properties
Properties

Properties of the facial weak order

Theorem (D., Hohlweg, McConville, Pilaud ’18+)

FW(A,B) is self-dual.
A simplicial implies FW(A,B) is semi-distributive.
A simplicial and X ∈ FA then X is join-irreducible in
FW(A,B) if and only if MX is join-irreducible in (R,B,≤A)
and codim(X ) ∈ {0,1}
Möbius function: X ,Y ∈ FA let Z = X ∩ Y.

µ(X ,Y ) =
{

(−1)rk(X)+rk(Y ) if X ≤ Z ≤ Y and Z = X−Z ∩ Y
0 otherwise
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Properties
Properties

Thank you!
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