Background Facial Weak Order Properties

The facial weak order in hyperplane arrangements

Aram Dermenjian^{1,3}

Christophe Hohlweg¹, Thomas McConville² and Vincent Pilaud³

¹Université du Québec à Montréal (UQAM) ²Mathematical Sciences Research Institute (MSRI) ³École Polytechnique (LIX)

6 April 2019

On this day in 1896 the modern olympics began in Athens, Greece after being banned for over 1,500 years!

Background Facial Weak Order Properties

5 4 3 1 The facial weak order in hyperplane arrangements 2

Aram Dermenjian^{1,3}

Christophe Hohlweg¹, Thomas McConville² and Vincent Pilaud³

¹Université du Québec à Montréal (UQAM) ²Mathematical Sciences Research Institute (MSRI) ³École Polytechnique (LIX)

6 April 2019

On this day in 1896 the modern olympics began in Athens, Greece after being banned for over 1,500 years!

History and Background - Hyperplanes

- $(V, \langle \cdot, \cdot \rangle)$ *n*-dim real Euclidean vector space.
- A hyperplane H_i is codim 1 subspace of V with normal e_i .

History and Background - Arrangements

- A hyperplane arrangement is $\mathcal{A} = \{H_1, H_2, \dots, H_k\}$.
- \mathcal{A} is *central* if $\{0\} \subseteq \bigcap \mathcal{A}$.
- Central \mathcal{A} is *essential* if $\{0\} = \bigcap \mathcal{A}$.

Example

< ロ > < 同 > < 回 > < 回 >

History and Background - Arrangements

- **Regions** \mathscr{R} connected components of V without \mathcal{A} .
- **Faces** $\mathscr{F}_{\mathcal{A}}$ intersections of closures of some regions.

H 5

Background Hype Facial Weak Order Pose Properties Motiv

Hyperplane Arrangements Poset of Regions Motivation

History and Background - (Partial) Orders

 Lattice - poset where every two elements have a meet (greatest lower bound) and join (least upper bound).

Example

- The lattice $(\mathbb{N}, |)$ where $a \leq b \Leftrightarrow a | b$.
 - meet greatest common divisor
 - join least common multiple

History and Background - Poset of regions

- **Base region** $B \in \mathscr{R}$ some fixed region
- Separation set for $R \in \mathcal{R}$

 $S(R) \coloneqq \{H \in \mathcal{A} \mid H \text{ separates } R \text{ from } B\}$

The facial weak order in hyperplane arrangements

History and Background - Poset of regions

- **Base region** $B \in \mathscr{R}$ some fixed region
- Separation set for $R \in \mathcal{R}$

 $S(R) \coloneqq \{H \in \mathcal{A} \mid H \text{ separates } R \text{ from } B\}$

History and Background - Poset of regions

- A region R is simplicial if normal vectors for boundary hyperplanes are linearly independent.
- \mathcal{A} is *simplicial* if all \mathscr{R} simplicial.

Example

Background Hyperpla Facial Weak Order Poset of Properties Motivation

Hyperplane Arrangements Poset of Regions Motivation

History and Background - Poset of regions

Theorem (Björner, Edelman, Zieglar '90)

If \mathcal{A} is simplicial then $(\mathscr{R}, B, \leq_{\mathcal{A}})$ is a lattice for any $B \in \mathscr{R}$. If $(\mathscr{R}, B, \leq_{\mathcal{A}})$ is a lattice then B is simplicial.

Example

BackgroundHyperplaFacial Weak OrderPoset ofPropertiesMotivation

Hyperplane Arrangements Poset of Regions Motivation

History and Background - Poset of regions

Theorem (Björner, Edelman, Zieglar '90)

If \mathcal{A} is simplicial then $(\mathscr{R}, B, \leq_{\mathcal{A}})$ is a lattice for any $B \in \mathscr{R}$. If $(\mathscr{R}, B, \leq_{\mathcal{A}})$ is a lattice then B is simplicial.

Example

Background Facial Weak Order Properties Hyperplane Arrangements Poset of Regions Motivation

Coxeter Arrangements

Example

A *Coxeter arrangement* is the hyerplane arrangement associated to a Coxeter group.

Coxeter Groups

- Reflecting hyperplanes \leftrightarrow
 - Root system $\ \leftrightarrow$
 - Inversion sets \leftrightarrow
 - Weak order

Hyperplane Arrangements

- Hyperplane arrangement
- Normals to hyperplanes
- Seperation sets
 - Poset of regions

 \leftrightarrow

Motivation

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order of Coxeter groups to an order on all the faces of its associated arrangement for type A.
- In 2006, Palacios and Ronco extended this new order to Coxeter groups of all types using cover relations.
- In 2016, D, Hohlweg and Pilaud showed this extension has a global equivalent and produces a lattice in Coxeter arrangements.

< ロ > < 同 > < 回 > < 回 >

Motivation

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order of Coxeter groups to an order on all the faces of its associated arrangement for type A.
- In 2006, Palacios and Ronco extended this new order to Coxeter groups of all types using cover relations.
- In 2016, D, Hohlweg and Pilaud showed this extension has a global equivalent and produces a lattice in Coxeter arrangements.
- Questions: Can we extend this to hyperplane arrangements? Can we find both local and global definitions? When do we actually get a lattice?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Background Facial Intervals Facial Weak Order Properties Lattice

All the definitions!

Facial Intervals

Proposition (Björner, Las Vergas, Sturmfels, White, Ziegler '93)

Let \mathcal{A} be central with base region B. For every $F \in \mathscr{F}_{\mathcal{A}}$ there is a unique interval $[m_F, M_F]$ in (\mathcal{R}, B, \leq_A) such that $[m_F, M_F] = \left\{ R \in \mathscr{R} \mid F \subseteq \overline{R} \right\}$

Facial Weak Order

Let \mathcal{A} be a central hyperplane arrangement and B a base region in \mathscr{R} .

Definition

The *facial weak order* is the order $FW(\mathcal{A}, B)$ on $\mathscr{F}_{\mathcal{A}}$ where for $F, G \in \mathscr{F}$:

$$F \leq G \Leftrightarrow m_F \leq_{\mathcal{A}} m_G$$
 and $M_F \leq_{\mathcal{A}} M_G$

A. Dermenjian (UQÀM)

The facial weak order in hyperplane arrangements

・ロト < 日 ト < 三 ト < 三 ト
</p>

ents 6 Apr 2019 12

া2/Ack(100,100)

A. Dermenjian (UQÀM)

The facial weak order in hyperplane arrangements

6 Apr 2019

13/Ack(100, 100

Background Facial Facial Weak Order All the Properties Lattice

Facial Intervals All the definitions! Lattice

Cover Relations

Proposition (D., Hohlweg, McConville, Pilaud, '18+)

< 回 > < 三 > < 三 >

Covectors

- *covector* a vector in {-,0,+}^A with signs relative to hyperplanes.
- $\mathcal{L} \subseteq \{-, 0, +\}^{\mathcal{A}}$ set of covectors

Example

$$F_4 \leftrightarrow (+,0,-)$$
 $F_4(H_1) = +;$ $F_4(H_2) = 0;$ $F_4(H_3) = -$

Covectors

- covector a vector in {-,0,+}^A with signs relative to hyperplanes.
- $\mathcal{L} \subseteq \{-, \mathbf{0}, +\}^{\mathcal{A}}$ set of covectors

Example

$$F_4 \leftrightarrow (+,0,-)$$
 $F_4(H_1) = +;$ $F_4(H_2) = 0;$ $F_4(H_3) = -$

Covector Definition

Definition

For $X, Y \in \mathcal{L}$:

 $X \leq_{\mathcal{L}} Y \Leftrightarrow Y(H) \leq X(H) \quad \text{ with } - < 0 < +$

The facial weak order in hyperplane arrangements

6 Apr 2019 17/a lo

ъ

< 17 ▶

Zonotopes

Zonotope Z_A is the convex polytope:

$$Z_{\mathcal{A}} \coloneqq \left\{ v \in V \mid v = \sum_{i=1}^{k} \lambda_i e_i, \text{ such that } |\lambda_i| \le 1 \text{ for all } i \right\}$$

Theorem (Edelman '84, McMullen '71)

There is a bijection between $\mathscr{F}_{\mathcal{A}}$ and the nonempty faces of $Z_{\mathcal{A}}$ given by the map

$$\tau(F) = \left\{ v \in V \mid v = \sum_{F(H_i)=0} \lambda_i e_i + \sum_{F(H_j)\neq 0} \mu_j e_j \right\}$$

where $|\lambda_i| \le 1$ for all i and $\mu_j = F(H_j)$

Zonotope - Construction example

A. Dermenjian (UQÀM)

The facial weak order in hyperplane arrangements

6 Apr 2019 1

19/a lot

æ

Root inversion sets

- roots $\Phi_{\mathcal{A}} \coloneqq \{\pm e_1, \pm e_2, \dots, \pm e_k\}$
- root inversion set

 ${f R}({\it F})\coloneqq \{{\it e}\in \Phi_{\cal A}\mid \ \langle {\it x}, {\it e}
angle \le 0 \ {
m for some} \ {\it x}\in {\it F}\}.$

Facial Intervals All the definitions! Lattice

Equivalent definitions

Theorem (D., Hohlweg, McConville, Pilaud '18+)

For $F, G \in \mathscr{F}_{\mathcal{A}}$ the following are equivalent:

- $m_F \leq_{\mathcal{A}} m_G$ and $M_F \leq_{\mathcal{A}} M_G$ in poset of regions $(\mathscr{R}, B, \leq_{\mathcal{A}})$.
- There exists a chain of covers in FW(A, B) such that

$$F = F_1 \lessdot F_2 \lessdot \cdots \lessdot F_n = G$$

■ $F \leq_{\mathcal{L}} G$ in terms of covectors ($G(H) \leq F(H) \forall H \in \mathcal{A}$) ■ $\mathbf{R}(F) \setminus \mathbf{R}(G) \subseteq \Phi_{\mathcal{A}}^-$ and $\mathbf{R}(G) \setminus \mathbf{R}(F) \subseteq \Phi_{\mathcal{A}}^+$.

Equivalence for type A₂ Coxeter arrangement

Facial weak order lattice

Theorem (D., Hohlweg, McConville, Pilaud '18+)

The facial weak order FW(A, B) is a lattice when A is simplicial.

Corollary (D., Hohlweg, McConville, Pilaud '18+)

The lattice of regions is a sublattice of the facial weak order lattice when A is simplicial.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

・ロト ・ 四ト ・ ヨト ・ ヨト

Background Facial Weak Order Properties

Properties

Properties of the facial weak order

Theorem (D., Hohlweg, McConville, Pilaud '18+)

- FW(A, B) is self-dual.
- A simplicial implies FW(A, B) is semi-distributive.
- A simplicial and $X \in \mathscr{F}_{\mathcal{A}}$ then X is join-irreducible in FW(\mathcal{A} , B) if and only if M_X is join-irreducible in (\mathscr{R} , B, $\leq_{\mathcal{A}}$) and $\operatorname{codim}(X) \in \{0, 1\}$
- Möbius function: $X, Y \in \mathscr{F}_{\mathcal{A}}$ let $Z = X \cap Y$.

$$\mu(X, Y) = \begin{cases} (-1)^{\mathsf{rk}(X) + \mathsf{rk}(Y)} & \text{if } X \leq Z \leq Y \text{ and } Z = X_{-Z} \cap Y \\ 0 & \text{otherwise} \end{cases}$$

< ロ > < 同 > < 回 > < 回 >

Background Facial Weak Order Properties

Properties

Thank you!

イロト イヨト イヨト イヨト