Facial Weak Order

Aram Dermenjian

Joint work with: Christophe Hohlweg (LACIM) and Vincent Pilaud (CNRS & LIX)

Université du Québec à Montréal

13 July 2016

■ The weak order was introduced on Coxeter groups by Björner in 1984, it was shown to be a lattice.

- The weak order was introduced on Coxeter groups by Björner in 1984, it was shown to be a lattice.
- Finite Coxeter System (W, S) such that

$$W := \langle s \in S \mid (s_i s_j)^{m_{i,j}} = e \text{ for } s_i, s_j \in S \rangle$$

where $m_{i,j} \in \mathbb{N}^*$ and $m_{i,j} = 1$ only if i = j.

■ A Coxeter diagram Γ_W for a Coxeter System (W, S) has S as a vertex set and an edge labelled $m_{i,j}$ when $m_{i,j} > 2$.

$$S_i \qquad S_j$$

The weak order was introduced on Coxeter groups by Björner in 1984, it was shown to be a lattice.

$$W_{B_3} = \langle s_1, s_2, s_3 | s_1^2 = s_2^2 = s_3^2 = (s_1 s_2)^4 = (s_2 s_3)^3 = (s_1 s_3)^2 = e \rangle$$

$$\Gamma_{B_3} : \qquad \underbrace{\begin{matrix} 4 \\ s_1 \end{matrix} \quad \begin{matrix} \bullet \\ s_2 \end{matrix} \quad \begin{matrix} \bullet \\ s_3 \end{matrix}}_{S_3}$$

The weak order was introduced on Coxeter groups by Björner in 1984, it was shown to be a lattice.

Let (W, S) be a Coxeter system.

- Let $w \in W$ such that $w = s_1 \dots s_n$ for some $s_i \in S$. We say that w has *length* n, $\ell(w) = n$, if n is minimal.
- Let the *(right) weak order* be the order on the Cayley graph where $\stackrel{W}{\longleftarrow} \stackrel{WS}{\longrightarrow}$ and $\ell(w) < \ell(ws)$.
- For finite Coxeter systems, there exists a longest element in the weak order, w_o .

■ The weak order was introduced on Coxeter groups by Björner in 1984, it was shown to be a lattice.

Let
$$\Gamma_{A_2}$$
: $\overset{s}{\bullet}$. $sts = w_0 = tst$

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 - 1 gave a local definition of this order using covers,
 - 2 gave a global definition of this order combinatorially, and
 - 3 showed that the poset for this order is a lattice.
- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 - gave a local definition of this order using covers,
 - 2 gave a global definition of this order combinatorially, and
 - 3 showed that the poset for this order is a lattice.
- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 - 1 gave a local definition of this order using covers, ✓
 - 2 gave a global definition of this order combinatorially, and
 - 3 showed that the poset for this order is a lattice.
- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.
- Our motivation was to continue this work for all Coxeter groups.

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 - 1 gave a local definition of this order using covers, v
 - 2 gave a global definition of this order combinatorially, and
 - 3 showed that the poset for this order is a lattice. \checkmark
- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.
- Our motivation was to continue this work for all Coxeter groups.

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 - 1 gave a local definition of this order using covers,
 - 2 gave a global definition of this order combinatorially, and
 - 3 showed that the poset for this order is a lattice. \checkmark
- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.
- Our motivation was to continue this work for all Coxeter groups.

Parabolic Subgroups

Let $I \subseteq S$.

- $W_I = \langle I \rangle$ is the *standard parabolic subgroup* with long element denoted $w_{\circ,I}$.
- $W^I := \{ w \in W \mid \ell(w) \leq \ell(ws), \text{ for all } s \in I \}$ is the set of minimal length coset representatives for W/W_I .
- Any element $w \in W$ admits a unique factorization $w = w^I \cdot w_I$ with $w^I \in W^I$ and $w_I \in W_I$.
- By convention in this talk xW_I means $x \in W^I$.
- Coxeter complex \mathcal{P}_W the abstract simplicial complex whose faces are all the standard parabolic cosets of W.

Facial Weak Order

Definition (Krob et.al. [2001], Palacios, Ronco [2006])

The *(right) facial weak order* is the order \leq_F on the Coxeter complex \mathcal{P}_W defined by cover relations of two types:

$$(1) xW_I \leqslant xW_{I \cup \{s\}} \text{if } s \notin I \text{ and } x \in W^{I \cup \{s\}},$$

(2)
$$xW_I \leqslant xw_{\circ,I}w_{\circ,I \setminus \{s\}}W_{I \setminus \{s\}}$$
 if $s \in I$,

where $I \subseteq S$ and $x \in W^I$.

Facial weak order example

- (1) $xW_I \lessdot xW_{I \cup \{s\}}$ if $s \notin I$ and $x \in W^{I \cup \{s\}}$
- (2) $xW_I \lessdot xw_{\circ,I}w_{\circ,I \setminus \{s\}}W_{I \setminus \{s\}}$ if $s \in I$

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 - 1 gave a local definition of this order using covers, \checkmark
 - 2 gave a global definition of this order combinatorially, and
 - 3 showed that the poset for this order is a lattice. \checkmark
- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.
- Our motivation was to continue this work for all Coxeter groups.

Root System

- Let $(V, \langle \cdot, \cdot \rangle)$ be a Euclidean space.
- Let W be a group generated by a set of reflections S. $W \hookrightarrow O(V)$ gives representation as a finite reflection group.
- The reflection associated to $\alpha \in V \setminus \{0\}$ is

$$s_{\alpha}(v) = v - \frac{2\langle v, \alpha \rangle}{||\alpha||^2} \alpha \quad (v \in V)$$

- A root system is $\Phi := \{\alpha \in V \mid s_{\alpha} \in W, ||\alpha|| = 1\}$
- We have $\Phi = \Phi^+ \sqcup \Phi^-$ decomposable into positive and negative roots.

Let (W, S) be a Coxeter system. Define (left) inversion sets as the set $\mathbf{N}(w) := \Phi^+ \cap w(\Phi^-)$.

Example

Let Γ_{A_2} : $\stackrel{s}{\bullet}$, with Φ given by the roots $\mathbf{N}(ts) = \Phi^+ \cap ts(\Phi^-) \qquad \stackrel{\alpha_s}{\gamma = \alpha_s + \alpha_t}$ $= \Phi^+ \cap \{\alpha_t, \gamma, -\alpha_s\}$ $= \{\alpha_t, \gamma\}$

Let (W, S) be a Coxeter system. Define (left) inversion sets as the set $\mathbf{N}(w) := \Phi^+ \cap w(\Phi^-)$.

Example

Let Γ_{A_2} : $\stackrel{s}{\bullet}$, with Φ given by the roots $\mathbf{N}(ts) = \Phi^+ \cap ts(\Phi^-) \qquad \stackrel{\alpha_s}{\gamma = \alpha_s + \alpha_t}$ $= \Phi^+ \cap \{\alpha_t, \gamma, -\alpha_s\}$ $= \{\alpha_t, \gamma\}$

Let (W, S) be a Coxeter system. Define (left) inversion sets as the set $\mathbf{N}(w) := \Phi^+ \cap w(\Phi^-)$.

Let
$$\Gamma_{A_2}$$
: $\stackrel{s}{\bullet}$, with Φ given by the roots
$$\mathbf{N}(ts) = \Phi^+ \cap ts(\Phi^-) \qquad \stackrel{\alpha_s}{\gamma = \alpha_s + \alpha_t}$$

$$= \Phi^+ \cap \{\alpha_t, \gamma, -\alpha_s\}$$

$$= \{\alpha_t, \gamma\}$$

Let (W, S) be a Coxeter system. Define (left) inversion sets as the set $\mathbf{N}(w) := \Phi^+ \cap w(\Phi^-)$.

Let
$$\Gamma_{A_2}$$
: $\stackrel{s}{\bullet}$, with Φ given by the roots
$$\mathbf{N}(ts) = \Phi^+ \cap ts(\Phi^-) \qquad \stackrel{\alpha_s}{\gamma = \alpha_s + \alpha_t}$$

$$= \Phi^+ \cap \{\alpha_t, \gamma, -\alpha_s\}$$

$$= \{\alpha_t, \gamma\}$$

Let (W, S) be a Coxeter system. Define (left) inversion sets as the set $\mathbf{N}(w) := \Phi^+ \cap w(\Phi^-)$.

Let
$$\Gamma_{A_2}$$
: $\stackrel{s}{\bullet}$, with Φ given by the roots
$$\mathbf{N}(ts) = \Phi^+ \cap ts(\Phi^-) \qquad \stackrel{\alpha_s}{\gamma = \alpha_s + \alpha_t}$$

$$= \Phi^+ \cap \{\alpha_t, \gamma, -\alpha_s\}$$

$$= \{\alpha_t, \gamma\}$$

Weak order and Inversion sets

Given $w, u \in W$ then $w \leq_R u$ if and only if $\mathbf{N}(w) \subseteq \mathbf{N}(u)$.

Example

Let Γ_{A_2} : $\stackrel{S}{\bullet}$, with Φ given by the roots

Definition (Root Inversion Set)

Let xW_I be a standard parabolic coset. The *root inversion set* is the set

$$\mathbf{R}(xW_I) := x(\Phi^- \cup \Phi_I^+)$$

Note that $N(x) = \mathbf{R}(xW_{\varnothing}) \cap \Phi^+$.

$$\mathbf{R}(sW_{\{t\}}) = s(\Phi^- \cup \Phi_{\{t\}}^+)
= s(\{-\alpha_s, -\alpha_t, -\gamma\} \cup \{\alpha_t\})
= \{\alpha_s, -\gamma, -\alpha_t, \gamma\}$$

$$\mathbf{R}(sW_{\{t\}}) = s(\Phi^- \cup \Phi_{\{t\}}^+)$$

$$= s(\{-\alpha_s, -\alpha_t, -\gamma\} \cup \{\alpha_t\})$$

$$= \{\alpha_s, -\gamma, -\alpha_t, \gamma\}$$

$$\begin{aligned} \mathbf{R}(sW_{\{t\}}) &= s(\Phi^- \cup \Phi_{\{t\}}^+) \\ &= s(\{-\alpha_s, -\alpha_t, -\gamma\} \cup \{\alpha_t\}) \\ &= \{\alpha_s, -\gamma, -\alpha_t, \gamma\} \end{aligned}$$

$$\begin{aligned} \mathbf{R}(sW_{\{t\}}) &= s(\Phi^- \cup \Phi_{\{t\}}^+) \\ &= s(\{-\alpha_s, -\alpha_t, -\gamma\} \cup \{\alpha_t\}) \\ &= \{\alpha_s, -\gamma, -\alpha_t, \gamma\} \end{aligned}$$

Equivalent definitions

Theorem (D., Hohlweg, Pilaud [2016])

The following conditions are equivalent for two standard parabolic cosets xW_I and yW_J in the Coxeter complex \mathcal{P}_W

- 1 $xW_I \leq_F yW_J$
- **2** $\mathbf{R}(xW_I) \setminus \mathbf{R}(yW_J) \subseteq \Phi^-$ and $\mathbf{R}(yW_J) \setminus \mathbf{R}(xW_I) \subseteq \Phi^+$.
- $x \leq_R y \text{ and } xw_{\circ,I} \leq_R yw_{\circ,J}.$

[e, e]

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 - 1 gave a local definition of this order using covers,
 - 2 gave a global definition of this order combinatorially, and
 - \blacksquare showed that the poset for this order is a lattice. \checkmark
- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.
- Our motivation was to continue this work for all Coxeter groups.

Facial weak order lattice

Theorem (D., Hohlweg, Pilaud [2016])

The facial weak order (\mathcal{P}_W, \leq_F) is a lattice with the meet and join of two standard parabolic cosets xW_I and yW_J given by:

$$xW_I \wedge yW_J = z_{\wedge}W_{K_{\wedge}},$$

$$xW_I \vee yW_J = z_{\vee}W_{K_{\vee}}.$$

where,

$$z_{\wedge} = x \wedge y$$
 and $K_{\wedge} = D_L(z_{\wedge}^{-1}(xw_{\circ,I} \wedge yw_{\circ,J}))$, and $z_{\vee} = xw_{\circ,I} \vee yw_{\circ,J}$ and $K_{\vee} = D_L(z_{\vee}^{-1}(x \vee y))$

Corollary (D., Hohlweg, Pilaud [2016])

The weak order is a sublattice of the facial weak order lattice.

Example: A_2 and B_2

Example: A_2 and B_2

Example (Meet example)

Recall

$$xW_I \wedge yW_J = z_{\wedge}W_{K_{\wedge}}$$

where $z_{\wedge} = x \wedge y$
 $K_{\wedge} = D_L(z_{\wedge}^{-1}(xw_{\circ,I} \wedge yw_{\circ,J}))$

We compute $ts \wedge stsW_{\{t\}}$.

$$z_{\wedge} = ts \wedge sts = e$$

$$\mathcal{K}_{\wedge} = D_{L}(z_{\wedge}^{-1}(tsw_{\circ,\emptyset} \wedge stsw_{\circ,t}))$$

$$= D_{L}(e(ts \wedge stst))$$

$$= D_{L}(ts) = \{t\}.$$

Möbius function

Recall that the *Möbius function* of a poset (P, \leq) is the function $\mu: P \times P \to \mathbb{Z}$ defined inductively by

$$\mu(p,q) := egin{cases} 1 & ext{if } p = q, \ -\sum_{p \leq r < q} \mu(p,r) & ext{if } p < q, \ 0 & ext{otherwise.} \end{cases}$$

Proposition (D., Hohlweg, Pilaud [2016])

The Möbius function of the facial weak order is given by

$$\mu(eW_{\varnothing}, yW_J) = egin{cases} (-1)^{|J|}, & \textit{if } y = e, \ 0, & \textit{otherwise}. \end{cases}$$

Quotients of the facial weak order

Lattice Congruences

Definition

A *lattice congruence* is an equivalence relation \equiv on a lattice (L, \leq) such that for each $x_1 \equiv x_2$ and $y_1 \equiv y_2$ then

- 1 $x_1 \wedge y_1 \equiv x_2 \wedge y_2$, and
- $x_1 \lor y_1 \equiv x_2 \lor y_2.$

Theorem (D., Hohlweg, Pilaud [2016])

Given a lattice congruence \equiv on (W, \leq_R) , the equivalence classes on (\mathcal{P}_W, \leq_F) defined by

$$xW_I \equiv yW_J \iff x \equiv y \text{ and } xw_{\circ,I} \equiv yw_{\circ,J}$$

give us a lattice congruence.

Facial Boolean Lattice

Corollary (D., Hohlweg, Pilaud [2016])

Let the (left) root descent set of a coset xW_1 be the set of roots

$$\mathbf{D}(xW_I) := \mathbf{R}(xW_I) \cap \pm \Delta \subseteq \Phi.$$

Let $xW_I \equiv^{\text{des}} yW_J$ if and only if $\mathbf{D}(xW_I) = \mathbf{D}(yW_J)$.

Facial Cambrian Lattice

Corollary (D., Hohlweg, Pilaud [2016])

Let c be any Coxeter element of W. Let \equiv^c be the c-Cambrian congruence (see Reading [Cambrian Lattice, 2004]). Then let $xW_I \equiv^c yW_J \iff x \equiv^c y$ and $xw_{\circ,I} \equiv^c yw_{\circ,J}$.

