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Motivation

History and Background

m The weak order was introduced on Coxeter groups by Bjorner
in 1984, it was shown to be a lattice.

m Finite Coxeter System (W, S) such that
W:=(s € S|(sis;)™ = e fors;,s; €85)

where m;j € N* and m;j =1 only if i = j.
m A Coxeter diagram 'y for a Coxeter System (W, S) has S as
a vertex set and an edge labelled m;; when m; ; > 2.
mj j

————e
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Coxeter Systems
Motivation

History and Background

m The weak order was introduced on Coxeter groups by Bjorner
in 1984, it was shown to be a lattice.
Let (W, S) be a Coxeter system.
m Let w € W such that w = s1...s, for some s; € S. We say
that w has length n, £(w) = n, if nis minimal.

m Let the (right) weak order be the order on the Cayley graph

where ‘o4 and U(w) < (ws).

m For finite Coxeter systems, there exists a longest element in
the weak order, ws.
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Motivation

History and Background

m The weak order was introduced on Coxeter groups by Bjorner
in 1984, it was shown to be a lattice.

Let Ta,: SR

sts = w, = tst

ts st
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Motivation

m In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended
the weak order to an order on all faces for type A using
inversion tables. They

gave a local definition of this order using covers,
gave a global definition of this order combinatorially, and
showed that the poset for this order is a lattice.

m In 2006, Ronco and Palacios extended this new order to
Coxeter groups of all types using cover relations.
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Local Definition
Global Definition
Root Inversion Set
Equivalence

Parabolic Subgroups
Let / C S.

m W, = (l) is the standard parabolic subgroup with long
element denoted w; ;.

m W= {we W|lw)<{(ws), for all s € I} is the set of
minimal length coset representatives for W /Wj.

m Any element w € W admits a unique factorization
w=w'w; with w/ € W and w; € W,.

m By convention in this talk xW; means x € W'.

m Coxeter complex - P\ - the abstract simplicial complex
whose faces are all the standard parabolic cosets of W.

tSW{t} sts StW{S}

ts st
tW{s} SW{t}
t S
Wiy % Wig
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Local Definition
Global Definition
Root Inversion Set
Equivalence

Facial Weak Order

Definition (Krob et.al. [2001], Palacios, Ronco [2006])

The (right) facial weak order is the order <g on the Coxeter
complex Py, defined by cover relations of two types:

(1) xW, < XWIU{S} if s ¢ | and x € WIU{S},
(2) xWi < xwo 1o 1 (s} Wik (s} if sel,

where | C S and x € W/.
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Local Definition
Global Definition
Root Inversion Set
Equivalence

Facial weak order example
(1) xW) < xWj,s if s ¢ | and x € W/2Hs}
(2) xW) < xwo o 1 (s Wi gsy if s €1

sts

A. Dermenjian (UQAM) Facial Weak Order



Local Definition
Global Definition
Root Inversion Set
Equivalence

Motivation

m In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended
the weak order to an order on all faces for type A using
inversion tables. They
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Local Definition
Global Definition
Root Inversion Set
Equivalence

Root System

m Let (V,(-,-)) be a Euclidean space.

m Let W be a group generated by a set of reflections S.
W — O(V) gives representation as a finite reflection group.

m The reflection associated to v € V\{0} is

sa(v) = v—ma (veV)

v =as t o

m A root systemis ®:={a € V |s, € W, |la]| =1}
m We have ® = & ] &~ decomposable into positive and
negative roots.
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Local Definition
Global Definition
Root Inversion Set
Equivalence

Inversion Sets

Let (W, S) be a Coxeter system.
Define (left) inversion sets as the set N(w):=®T N w(d7).

—ats - t—as
Let [, : 25 , with ® given by the roots \/ \/
N(ts) = ¢ Nts(d7) o et
=" N {a,y, —as}
= {a,7}
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Inversion Sets

Let (W, S) be a Coxeter system.
Define (left) inversion sets as the set N(w):=®T N w(d7).

s 7t
—Qt NV —Qs

Let [, : s ! , with ® given by the roots

N(ts) = dT Nts(d) Y= s+ o
=0T N {at,v, —as}
- {atvv}
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Local Definition
Global Definition
Root Inversion Set
Equivalence

Weak order and Inversion sets

Given w,u € W then w <g u if and only if N(w) C N(u).

-

s ot : o o
Let T4, : =——e , with ® given by the roots *
fy: as + at ‘
sts P+
ts st {at,7} {as,7}
t s {or} {as}
e @
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Local Definition
Global Definition
Root Inversion Set
Equivalence

Root Inversion Set

Definition (Root Inversion Set)

Let xWW, be a standard parabolic coset. The root inversion set is
the set
R(xW;):=x(®~ U d})

Note that N(x) = R(xWy) N o+,

tSW{t} Sts StW{S}

ts st v 7. B
tWisy Wiy * k
t s R Yy

Wiey v Wiy
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Local Definition
Global Definition
Root Inversion Set
Equivalence

Root Inversion Set

Example

R(sWiy) = s(®~ U o)

= s({—as,—ar, =7} U {ax})
= {as, —, —0t, v}

tSW{t} Sts StW{S}

ts st v L. B
tWis) sWiey * k
t s R Yy

Wiey v Wiy
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Root Inversion Set

Example

Local Definition
Global Definition
Root Inversion Set
Equivalence

R(sWiy) = s(®~ U o)

= s({—as,—ar, =7} U {ax})
= {as, —, —0t, v}

tSW{t} Sts StW{S}
ts st
tW{S} SW{t}
t S
Win N Wiy
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Root Inversion Set

Example
R(sWiy) = s(®~ U o)

= s({—as,—ar, =7} U {ax})
= {as, —, —0t, v}

tSW{t} Sts StW{S}
st

ts . T g
t s e Yy

Wiey v Wiy
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Local Definition
Global Definition
Root Inversion Set
Equivalence

Equivalent definitions

Theorem (D., Hohlweg, Pilaud [2016])

The following conditions are equivalent for two standard parabolic
cosets xW; and yW/ in the Coxeter complex Py

xWi <p yW,
R(xW)) ~ R(yW,) C &~ and R(yW,) <~ R(xW)) C &*.
x <Ry and xw, | <R yWo J.
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Local Definition
Global Definition
Root Inversion Set
Equivalence

Equivalence for type A, Coxeter System o * e
sts @ as ag

X e

I
R(xWi) N R(yW,) C ¢~
R(yW,) N R(xW;) C &+

[st, st]

[s, st]

[s:s] <y

e s
[e,<] XWo,| SR YWo

[e; €]
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Root Inversion Set
Equivalence

Equivalence for type A, Coxeter System

sts

[st, sts]
[st, st] <
R(xW)) ~ R(yW,) C &
[s, st] R(YW)) ~ R(xW)) C o+
[s, ]

x <Ry

e s
le <] XWo,| SR YWo

[e; €]
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Equivalence for type A, Coxeter System

sts

[st, sts]
[st, st] <
R(xW)) ~ R(yW,) C &
[s, st] R(YW)) ~ R(xW)) C o+
[s, ]

x <Ry

e,s
le, <] XWo,| <R YWo J

[e.e]
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Local Definition
Global Definition
Root Inversion Set
Equivalence

Equivalence for type A, Coxeter System

sts

[st, st]

R(xWi) N R(yW,) C &~
R(yW,) N R(xW;) C &+

[s, st]

sl <.y

e,s
le, <] XWo,1 <R YWo,J

[e; €]
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Mébius function
Lattice Congruences

Motivation
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Lattice
Mébius function
Lattice Congruences

Facial weak order lattice
Theorem (D., Hohlweg, Pilaud [2016])

The facial weak order (Pw, <f) is a lattice with the meet and join
of two standard parabolic cosets xW; and yW; given by:

xWy AN yW,; = z, Wk, ,

xWy v yW,; = z, Wk, .
where,
z, =xAy and K, = Dy (z7 (xwo s A yws ), and
z, = XWo 1 V YW, and K, = D (z7 (x Vy))

Corollary (D., Hohlweg, Pilaud [2016])

The weak order is a sublattice of the facial weak order lattice.
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Example: A; and B,

sts
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StSW{t}

st W{s} tSW{ t}
st ts
sWin tWisy
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Lattice
Mébius function
Lattice Congruences

Example: A; and B,
StSW{t Stst tStW{S}

Example (Meet example)

Recall

StW{s} tSW{t}
xWi AN yW, = z, Wk, ot
where z, =xAy
SW{t} tW{S}
K, = Di(z~ (XWO 1A\ yWs J))
We compute ts A stsWiy. Wig . Wiy
=ts/\sts=¢e

K. = Dy(z  (tswop A stswe.r))
= Dy (e(ts A stst))
= Dy (ts) = {t}.
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Lattice
Mébius function
Lattice Congruences

Mobius function

Recall that the Mébius function of a poset (P, <) is the
function i : P X P — Z defined inductively by

1 if p=gq,
w(p,q)= 34— > mp.r) fp<a,
p<r<q
0 otherwise.

Proposition (D., Hohlweg, Pilaud [2016])

The Mobius function of the facial weak order is given by

(_1)|J|a ify: €,

eWy, yW)) =
H(eWa, yWs) {0, otherwise.
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Lattice Congruences

Quotients of the facial weak order
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Lattice
Mébius function
Lattice Congruences

Lattice Congruences

A lattice congruence is an equivalence relation = on a lattice
(L, <) such that for each x; = x» and y; = y» then

x1 A y1 = X2 A y», and
x1Vyir=xVys.

Theorem (D., Hohlweg, Pilaud [2016])

Given a lattice congruence = on (W, <g), the equivalence classes
on (Pw, <fr) defined by

W= yW; <= x =y and xw, | = yw, 4

give us a lattice congruence.
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Lattice
Mébius function
Lattice Congruences

Facial Boolean Lattice
Corollary (D., Hohlweg, Pilaud [2016])

Let the (left) root descent set of a coset xW, be the set of roots

D(xW)):= R(xW)) N +A C o.

Let xW,; =45 yW, if and only if D(xW;) = D(yW)).

D(stW{s}) D(sts) D(tsW{t}) [stS]des
D(st) D(ts) [tsWiey ] des
D(sWy4y) D(tWysy)

D(s) D(t)
D(Wisy) Do) D(Wy4y)
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Lattice
Mébius function
Lattice Congruences

Facial Cambrian Lattice

Corollary (D., Hohlweg, Pilaud [2016])

Let ¢ be any Coxeter element of W. Let =€ be the c-Cambrian
congruence (see Reading [Cambrian Lattice, 2004]). Then let
xW) = yW,; <= x =y and xw, | = yw, 4.
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