Aram Dermenjian (York Uni), Christophe Hohlweg (LaCIM), Thomas McConville (UNC), Vincent Pilaud (LIX)

Welcome!

Thanks for coming to my poster talk! You can either go through the slides like "normal", or jump around using the links in green (ex: Go to directory) or in the bottom-right corner of every slide. If you have any questions, don't hesitate to ask Aram!

Aram Dermenjian (York Uni), Christophe Hohlweg (LaCIM), Thomas McConville (UNC), Vincent Pilaud (LIX)

Directory of contents Background:

- Hyperplane arrangements
- Regions and faces
- Poset of regions
- Lattice of regions

Facial Weak Order:

- Facial intervals
- Covectors
- Facial weak order
- Our main results
- Properties

Come back at any time

Back to: directory, results

Aram Dermenjian (York Uni), Christophe Hohlweg (LaCIM), Thomas McConville (UNC), Vincent Pilaud (LIX)

Hyperplane arrangements Let $(V, \langle \cdot, \cdot \rangle)$ be an *n*-dim real Euclidean vector space.

- A hyperplane H is codim 1 subspace of V with normal e_H .
- A hyperplane arrangement is $\mathcal{A} = \{H_1, H_2, \dots, H_k\}$.

Aram Dermenjian (York Uni), Christophe Hohlweg (LaCIM), Thomas McConville (UNC), Vincent Pilaud (LIX)

Regions and faces

Let \mathcal{A} be an arrangement.

- **Regions** $\mathscr{R}_{\mathcal{A}}$ connected components of V without \mathcal{A} .
- **Faces** $\mathscr{F}_{\mathcal{A}}$ intersections of closures of some regions.

Aram Dermenjian (York Uni), Christophe Hohlweg (LaCIM), Thomas McConville (UNC), Vincent Pilaud (LIX)

Poset of regions

- **Base region B** some fixed region in $\mathscr{R}_{\mathcal{A}}$.
- Separation set for $R \in \mathscr{R}_A$ $S(R) := \{H \in \mathcal{A} \mid H \text{ separates } R \text{ from } B\}$ H_1 The poset of regions $PR(\mathcal{A}, B)$ is the
- set of regions ordered by inclusion: $R \leq_{PR} R' \Leftrightarrow S(R) \subseteq S(R')$

Aram Dermenjian (York Uni), Christophe Hohlweg (LaCIM), Thomas McConville (UNC), Vincent Pilaud (LIX)

Lattice of regions

An arrangement A in \mathbb{R}^n is *simplicial* if every region is simplicial (*i.e.*, has *n* boundary hyperplanes).

Slides can be found at: dermenjian.com

Aram Dermenjian (York Uni), Christophe Hohlweg (LaCIM), Thomas McConville (UNC), Vincent Pilaud (LIX)

Facial intervals

Proposition (Björner, Las Vergnas, Sturmfels, White, Ziegler '93)

For every $F \in \mathscr{F}_{\mathcal{A}}$ there is a unique interval in $PR(\mathcal{A}, B)$: $[m_F, M_F] = \left\{ R \in \mathscr{R}_{\mathcal{A}} \mid F \subseteq \overline{R} \right\}$

Slides can be found at: dermenjian.com

Aram Dermenjian (York Uni), Christophe Hohlweg (LaCIM), Thomas McConville (UNC), Vincent Pilaud (LIX)

Covectors

A *covector* of a face is a sign vector in $\{-, 0, +\}^{\mathcal{A}}$ relative to hyperplanes.

Aram Dermenjian (York Uni), Christophe Hohlweg (LaCIM), Thomas McConville (UNC), Vincent Pilaud (LIX)

Facial weak order

Let PR(A, B) be the poset of regions, $[m_F, M_F]$ be the facial interval of a face *F* and *L* be the set of covectors.

The *facial weak order*, FW(A, B), is the partial order \leq_{FW} on the set of faces (the left-hand definition). Let F, G by faces in \mathscr{F}_A :

Definition	Definition	Definition
$\pmb{F} \leq_{\sf FW} \pmb{G}$	If $ \dim(F) - \dim(G) = 1$ and	${\it F} \leq_{{\cal L}} {\it G}$
\Leftrightarrow	1. $F \subseteq G$, $M_F = M_G$, or	\Leftrightarrow
$m_F \leq_{\sf PR} m_G$	2 . $G \subseteq F$, $m_F = m_G$.	$F(H) \ge G(H)$
$M_F \leq_{\sf PR} M_G$	then $F < G$.	$(orall H \in \mathcal{A})$

Theorem (Dermenjian, Hohlweg, McConville, Pilaud '19+)

$$(F \leq_{\mathsf{FW}} G) \quad \Leftrightarrow \quad (F = F_1 < \ldots < F_n = G) \quad \Leftrightarrow \quad (F \leq_{\mathcal{L}} G)$$

(日本) (日本) (日本)

Aram Dermenjian (York Uni), Christophe Hohlweg (LaCIM), Thomas McConville (UNC), Vincent Pilaud (LIX)

Main results

Theorem (Dermenjian, Hohlweg, McConville, Pilaud '19+)

Let A be an arrangement and fix a base region B. If the poset of regions PR(A, B) is a lattice then the facial weak order FW(A, B) is a lattice.

B₃ Example:

Properties of the facial weak order

Slides can be found at: dermenjian.com

Aram Dermenjian (York Uni), Christophe Hohlweg (LaCIM), Thomas McConville (UNC), Vincent Pilaud (LIX)

Properties of the facial weak order

- 1. *Dual* of a poset *P* is the poset P^{op} where $x \leq_P y$ iff $y \leq_{P^{op}} x$. *Self-dual* if $P \cong P^{op}$.
- 2. A lattice is *semi-distributive* if $x \lor y = x \lor z$ implies $x \lor y = x \lor (y \land z)$ and similarly for meets.
- 3. $x \in P$ is *join-irreducible* if it covers exactly one element.

Theorem (Dermenjian, Hohlweg, McConville, Pilaud '19+)

- Facial weak order is self-dual.
- If A is simplicial then the facial weak order is semi-distributive.
- If A is simplicial then F is join-irreducible if and only if M_F is join-irreducible in PR(A, B) and codim(F) ∈ {0, 1}.

The Möbius function for $X \leq Y$ is given by:

$$\mu(X, Y) = \begin{cases} (-1)^{\mathsf{rk}(X) + \mathsf{rk}(Y)} & \text{if } X \leq Z \leq Y \text{ and } Z = X_{-Z} \cap Y \\ 0 & \text{otherwise} \end{cases}$$

くロン (語) (ヨン (ヨン)