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Hyperplane arrangements
Let (V , 〈·, ·〉) be an n-dim real Euclidean vector space.

A hyperplane H is codim 1 subspace of V with normal eH .

A hyperplane arrangement is A = {H1, H2, . . . , Hk}.

A is central if {0} ⊆
⋂
A.

Central A is essential if {0} =
⋂
A.
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Regions and faces
Let A be an arrangement.

Regions RA - connected components of V without A.
Faces FA - intersections of closures of some regions.
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Poset of regions
Base region B - some fixed region in RA.
Separation set for R ∈ RA
S(R) := {H ∈ A | H separates R from B}

The poset of regions PR(A, B) is the
set of regions ordered by inclusion:
R ≤PR R′ ⇔ S(R) ⊆ S(R′)
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Lattice of regions
An arrangement A in Rn is simplicial if every region is simplicial
(i.e., has n boundary hyperplanes).

Theorem (Björner, Edelman,
Ziegler ’90)

If A is simplicial then PR(A, B) is a
lattice for any B ∈ RA.

If PR(A, B) is a lattice then B is
simplicial.
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Facial intervals
Proposition (Björner, Las Vergnas, Sturmfels, White, Ziegler ’93)

For every F ∈ FA there is a unique interval in PR(A, B):
[mF , MF ] =

{
R ∈ RA | F ⊆ R

}
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Covectors
A covector of a face is a sign vector in {−, 0, +}A relative to
hyperplanes.
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Facial weak order
Let PR(A, B) be the poset of regions, [mF , MF ] be the facial
interval of a face F and L be the set of covectors.
The facial weak order, FW(A, B), is the partial order ≤FW on the
set of faces (the left-hand definition). Let F , G by faces in FA:

Definition
F ≤FW G
⇔

mF ≤PR mG

MF ≤PR MG

Definition

If |dim(F )− dim(G)| = 1 and
1. F ⊆ G, MF = MG, or
2. G ⊆ F , mF = mG.
then F <· G.

Definition
F ≤L G
⇔

F (H) ≥ G(H)
(∀H ∈ A)

Theorem (Dermenjian, Hohlweg, McConville, Pilaud ’19+)

(F ≤FW G) ⇔ (F = F1 <· . . . <· Fn = G) ⇔ (F ≤L G)
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Main results
Theorem (Dermenjian, Hohlweg, McConville, Pilaud ’19+)

Let A be an arrangement and fix a base region B. If the poset
of regions PR(A, B) is a lattice then the facial weak order
FW(A, B) is a lattice.

B3 Example:

Properties of the
facial weak order

→

FPSAC 2020 Slides can be found at: dermenjian.com Back to: directory, results

http://dermenjian.com


The facial weak order in hyperplane arrangements
Aram Dermenjian (York Uni), Christophe Hohlweg (LaCIM), Thomas McConville (UNC), Vincent Pilaud (LIX)

Properties of the facial weak order
1. Dual of a poset P is the poset Pop where x ≤P y iff y ≤Pop x . Self-dual if P ∼= Pop.

2. A lattice is semi-distributive if x ∨ y = x ∨ z implies x ∨ y = x ∨ (y ∧ z) and similarly
for meets.

3. x ∈ P is join-irreducible if it covers exactly one element.

Theorem (Dermenjian, Hohlweg, McConville, Pilaud ’19+)

Facial weak order is self-dual.

If A is simplicial then the facial weak order is semi-distributive.

IfA is simplicial then F is join-irreducible if and only if MF is join-irreducible in PR(A,B)
and codim(F ) ∈ {0, 1}.

The Möbius function for X ≤ Y is given by:

µ(X ,Y ) =
{

(−1)rk(X)+rk(Y ) if X ≤ Z ≤ Y and Z = X−Z ∩ Y
0 otherwise
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