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On this day in 1909 Stan Ulam was born.

“Knowing what is big and what is small is more important than being able to solve partial differential

equations.” - Ulam.
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Background
Facial Weak Order

Lattice and properties

Coxeter Systems
Motivation

History and Background
Finite Coxeter System (W ,S) such that

W := 〈s ∈ S | (sisj)mi,j = e for si , sj ∈ S〉
where mi ,j ∈ N? and mi ,j = 1 only if i = j .
A Coxeter diagram ΓW for a Coxeter System (W ,S) has S as
a vertex set and an edge labelled mi ,j when mi ,j > 2.

si sj

mi,j

Example

WB3 =
〈
s1, s2, s3 | s21 = s22 = s23 = (s1s2)4 = (s2s3)3 = (s1s3)2 = e

〉
ΓB3 : s1 s2 s3

4
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Finite Coxeter System (W ,S) such that

W := 〈s ∈ S | (sisj)mi,j = e for si , sj ∈ S〉

where mi ,j ∈ N? and mi ,j = 1 only if i = j .
A Coxeter diagram ΓW for a Coxeter System (W ,S) has S as
a vertex set and an edge labelled mi ,j when mi ,j > 2.

si sj

mi,j

Example
WAn = Sn+1, symmetric group.

ΓAn : s1 s2 s3 sn−1 sn
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Finite Coxeter System (W ,S) such that

W := 〈s ∈ S | (sisj)mi,j = e for si , sj ∈ S〉

where mi ,j ∈ N? and mi ,j = 1 only if i = j .
A Coxeter diagram ΓW for a Coxeter System (W ,S) has S as
a vertex set and an edge labelled mi ,j when mi ,j > 2.

si sj

mi,j

Example
WI2(m) = D(m), dihedral group of order 2m.

ΓI2(m) : s1 s2
m
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Background
Facial Weak Order

Lattice and properties

Coxeter Systems
Motivation

History and Background

Let (W ,S) be a Coxeter system.
Let w ∈W such that w = s1 . . . sn for some si ∈ S. We say
that w has length n, `(w) = n, if n is minimal.

Example

Let ΓA2 : s t .
`(stst) = 2 as stst = tstt = ts.

Let the (right) weak order be the order on the Cayley graph
where w ws and `(w) < `(ws).
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Background
Facial Weak Order

Lattice and properties

Coxeter Systems
Motivation

History and Background
Theorem (Björner [1984])

Let (W ,S) be a finite Coxeter system. The weak order is a lattice
graded by length.

For finite Coxeter systems, there exists a longest element in
the weak order, w◦.

Example

Let ΓA2 : s t .

e
t s

ts st
sts = w◦ = tst
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Motivation

Motivation

In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended
the weak order to an order on all faces for type A using
inversion tables. They

1 gave a local definition of this order using covers,
2 gave a global definition of this order combinatorially, and
3 showed that the poset for this order is a lattice.

In 2006, Ronco and Palacios extended this new order to
Coxeter groups of all types using cover relations.

Problems: Can we find a global definition for this poset, and
is it a lattice?
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Global Definition
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Equivalence

Parabolic Subgroups
Let I ⊆ S.

WI = 〈I〉 is standard parabolic subgroup (long element: w◦,I).
W I := {w ∈W | `(w) ≤ `(ws), for all s ∈ I} is the set of
min length coset representatives for W /WI .
Unique factorization: w = w I · wI with w I ∈W I , wI ∈WI .
By convention in this talk xWI means x ∈W I .
Coxeter complex - PW - the abstract simplicial complex
whose faces are all the standard parabolic cosets of W .

W{s}W{t}

sW{t}tW{s}

stW{s}tsW{t}

e
t s

ts st
sts

W
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Equivalence

Facial Weak Order

Let (W ,S) be a finite Coxeter system.

Definition (Krob et.al. [2001, type A], Palacios, Ronco [2006])

The (right) facial weak order is the order ≤F on the Coxeter
complex PW defined by cover relations of two types:

(1) xWI <· xWI∪{s} if s /∈ I and x ∈W I∪{s},

(2) xWI <· xw◦,Iw◦,Ir{s}WIr{s} if s ∈ I,

where I ⊆ S and x ∈W I .
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Facial Weak Order

Lattice and properties

Local Definition
Global Definition
Root Inversion Set
Equivalence

Facial weak order example
(1) xWI <· xWI∪{s} if s /∈ I and x ∈W I∪{s}

(2) xWI <· xw◦,Iw◦,Ir{s}WIr{s} if s ∈ I

e

st

stts

sts

W{s}W{t}

tW{s} sW{t}

stW{s}tsW{t}

W

(1)(1)

(1)(1)

(1)(1)

(2)(2)

(2)(2)

(2)(2)

(1)(1)

(2)(2)

A. Dermenjian (UQÀM) The facial weak order and its lattice of quotients 13 Apr 2019 9/102



Background
Facial Weak Order

Lattice and properties

Local Definition
Global Definition
Root Inversion Set
Equivalence

Motivation

In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended
the weak order to an order on all faces for type A using
inversion tables. They

1 gave a local definition of this order using covers, X
2 gave a global definition of this order combinatorially, and X
3 showed that the poset for this order is a lattice. X

In 2006, Ronco and Palacios extended this new order to
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Facial Intervals
Proposition (Björner, Las Vergas, Sturmfels, White, Ziegler ’93)

Let (W ,S) be a finite Coxeter system and xWI a standard
parabolic coset. Then there exists a unique interval [x , xw◦,I ] in the
weak order such that

xWI = [x , xw◦,I ].

W{s}W{t}

sW{t}tW{s}

stW{s}tsW{t}

e

t s

ts st

sts

W
e

t s

ts st
sts

[e, s][e, t]

[s, st][t, ts]

[st, sts][ts, sts]

[e, e]

[t, t] [s, s]

[ts, ts] [st, st]

[sts, sts]

[e, sts]
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Global Definition
Definition
Let ≤F ′ be the order on the Coxeter complex PW defined by

xWI ≤F ′ yWJ ⇔ x ≤R y and xw◦,I ≤R yw◦,J

e
t s

ts st
sts

[e, e]

[s, s][t, t]

[st, st][ts, ts]

[sts, sts]

[e, s][e, t]

[t, ts] [s, st]

[st, sts][ts, sts]

[e, sts]
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Root System
Let (V , 〈·, ·〉) be a real Euclidean space.
Let W be a group generated by a set of reflections S.
W ↪→ O(V ) gives representation as a finite reflection group.
The reflection associated to α ∈ V \{0} is

sα(v) = v − 2 〈v , α〉
||α||2

α (v ∈ V )

A root system is Φ := {α ∈ V | sα ∈W , ||α|| = 1}
We have Φ = Φ+ t Φ− decomposable into positive and
negative roots.

αs

γ = αs + αt

αt

−αs

−γ

−αt
s t
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Relationship between Root Systems and Coxeter Systems
WA2 =

〈
s, t | s2 = t2 = (st)3 = e

〉
ΓA2 : s t

Perm(W ) = {w(x) | w ∈W }

αs

γ = αs + αt

αt

−αs

−γ

−αt

s t

xe(x)

t(x) s(x)

st(x)

sts(x)

ts(x)

e

t s

st

sts

ts

W{s}W{t}

sW{t}

stW{s}tsW{t}

tW{s}
W
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Inversion Sets

Let (W ,S) be a Coxeter system.
Define (left) inversion sets as the set N(w) := Φ+ ∩ w(Φ−).

Example

Let ΓA2 : s t , with Φ given by the roots
αs
γ = αs + αt

αt

−αs
−γ

−αt
s t

s t

N(ts) = Φ+ ∩ ts(Φ−)
= Φ+ ∩ {αt , γ,−αs}
= {αt , γ}
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Local Definition
Global Definition
Root Inversion Set
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Weak order and Inversion sets

Given w , u ∈W then w ≤R u if and only if N(w) ⊆ N(u).

Example

Let ΓA2 : s t , with Φ given by the roots
αs
γ = αs + αt

αt

−αs
−γ

−αt

e
t s

ts st
sts

∅

{αt} {αs}

{αt , γ} {αs , γ}
Φ+
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Local Definition
Global Definition
Root Inversion Set
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Root Inversion Set
Definition (Root Inversion Set)

Let xWI be a standard parabolic coset. The root inversion set is
the set

R(xWI) := x(Φ− ∪ Φ+
I )

Note that N(x) = R(xW∅) ∩ Φ+.

Example

R(sW{t}) = s(Φ− ∪ Φ+
{t})

= s({−αs ,−αt ,−γ} ∪ {αt})
= {αs ,−γ,−αt , γ}

W{s}W{t}

sW{t}tW{s}

stW{s}tsW{t}

e

t s

ts st

sts

W
αs

γ
αt

−αs
−γ

−αt

s
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Equivalent definitions

Theorem (D., Hohlweg, Pilaud [2016])

The following conditions are equivalent for two standard parabolic
cosets xWI and yWJ in the Coxeter complex PW

1 xWI ≤F yWJ

2 R(xWI) r R(yWJ) ⊆ Φ− and R(yWJ) r R(xWI) ⊆ Φ+.
3 x ≤R y and xw◦,I ≤R yw◦,J .
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Local Definition
Global Definition
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Equivalence for type A2 Coxeter System
αs

γ
αt

−αs
−γ

−αt

xWI ≤F yWJ

e

st

stts

sts

W{s}W{t}

tW{s} sW{t}

stW{s}tsW{t}

W

(1)(1)

(1)(1)

(1)(1)

(2)(2)

(2)(2)

(2)(2)

(1)(1)

(2)(2)

x ≤R y
xw◦,I ≤R yw◦,J

x ≤R y
xw◦,I ≤R yw◦,J

[e, e]

[s, s][t, t]

[st, st][ts, ts]

[sts, sts]

[e, s][e, t]

[t, ts] [s, st]

[st, sts][ts, sts]

[e, sts]

[e, s]

[ts, sts]

[e, s]

[ts, sts]

R(xWI ) r R(yWJ ) ⊆ Φ−

R(yWJ ) r R(xWI ) ⊆ Φ+

R(xWI ) r R(yWJ ) ⊆ Φ−
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Motivation

In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended
the weak order to an order on all faces for type A using
inversion tables. They

1 gave a local definition of this order using covers, X
2 gave a global definition of this order combinatorially, and X
3 showed that the poset for this order is a lattice. X

In 2006, Ronco and Palacios extended this new order to
Coxeter groups of all types using cover relations.
Problems: Can we find a global definition for this poset, and
is it a lattice?
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Facial weak order lattice
Theorem (D., Hohlweg, Pilaud [2016])

The facial weak order (PW ,≤F ) is a lattice with the meet and join
of two standard parabolic cosets xWI and yWJ given by:

xWI ∧ yWJ = z∧WK∧ ,

xWI ∨ yWJ = z∨WK∨ .

where,
z∧ = x ∧ y and K∧ = DL

(
z−1∧ (xw◦,I ∧ yw◦,J)

)
, and

z∨ = xw◦,I ∨ yw◦,J and K∨ = DL
(
z−1∨ (x ∨ y)

)

Corollary (D., Hohlweg, Pilaud [2016])

The weak order is a sublattice of the facial weak order lattice.
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Example: A2 and B2

e

st

stts

sts

W{s}W{t}

tW{s} sW{t}

stW{s}tsW{t}

W

Example (Meet example)

Recall

xWI ∧ yWJ = z∧WK∧
where z∧ = x ∧ y

K∧ = DL(z−1∧ (xw◦,I ∧ yw◦,J))

We compute ts ∧ stsW{t}.

z∧ = ts ∧ sts = e
K∧ = DL(z−1∧ (tsw◦,∅ ∧ stsw◦,t))

= DL(e(ts ∧ stst))
= DL(ts) = {t}.

e

st

stts

ststst

stst

W{s}W{t}

sW{t}tW{s}

stW{s}tsW{t}

stsW{t}tstW{s}

W
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Möbius function
Recall that the Möbius function of a poset (P,≤) is the
function µ : P × P → Z defined inductively by

µ(p, q) :=


1 if p = q,
−

∑
p≤r<q

µ(p, r) if p < q,

0 otherwise.

Proposition (D., Hohlweg, Pilaud [2016])

The Möbius function of the facial weak order is given by

µ(eW∅, yWJ) =
{

(−1)|J|, if y = e,
0, otherwise.
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Quotients of the facial weak order
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Lattice Congruences
Definition
A lattice congruence is an equivalence relation ≡ on a lattice
(L,≤) such that for each x1 ≡ x2 and y1 ≡ y2 then

1 x1 ∧ y1 ≡ x2 ∧ y2, and
2 x1 ∨ y1 ≡ x2 ∨ y2.

Theorem (D., Hohlweg, Pilaud [2016])

Given a lattice congruence ≡ on (W ,≤R), the equivalence classes
on (PW ,≤F ) defined by

xWI yWJ ⇔ x ≡ y and xw◦,I ≡ yw◦,J

give us a lattice congruence.
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Facial Boolean Lattice
Corollary (D., Hohlweg, Pilaud [2016])

Let the (left) root descent set of a coset xWI be the set of roots

D(xWI) := R(xWI) ∩ ±∆ ⊆ Φ.

Let xWI
des yWJ if and only if D(xWI) = D(yWJ).

e

s t

st ts

sts

W{s} W{t}

tW{s}sW{t}

stW{s} tsW{t}

W [e]des

[s]des [t]des

[sts]des

[W{s}]des [W{t}]des

[stW{s}]des [tsW{t}]des
[W ]des

D(e)

D(s) D(t)

D(st) D(ts)

D(sts)

D(W{s}) D(W{t})

D(sW{t}) D(tW{s})

D(stW{s}) D(tsW{t})

D(W )
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Facial Cambrian Lattice

Corollary (D., Hohlweg, Pilaud [2016])

Let c be any Coxeter element of W . Let ≡c be the c-Cambrian
congruence (due to Reading [Cambrian Lattice, 2004]). Then let
xWI

c yWJ ⇔ x ≡c y and xw◦,I ≡c yw◦,J .

e

s t

st ts

sts

W{s} W{t}

tW{s}sW{t}

stW{s} tsW{t}

W

c = st

[e]c

[s]c

[st]c

[sts]c

[W{s}]c
[W{t}]c

[t]c[sW{t}]c

[stW{s}]c
[tsW{t}]c

[W ]c
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Join-Irreducibles

A join-irreducible element γ in a poset (P,≤) is an element with a
unique descent γ?.

Proposition (D., Hohlweg, Pilaud [2016])

A standard parabolic coxet xWI is join-irreducible in the facial
weak order if and only if we have one of the two following cases

I = ∅ and x is join-irreducible in the right weak order, or
I = {s} and xs is join-irreducible in the right weak order.
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Further Works

Already extended to hyperplane arrangements and oriented
matroids.

Can we extend the facial weak order to other objects such as
arbitrary polytopes?

Is the facial weak order congruence uniform?
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Thank you!
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