The facial weak order and its lattice of quotients

Aram Dermenjian

Joint work with: Christophe Hohlweg (LACIM) and Vincent Pilaud (CNRS & LIX)

Université du Québec à Montréal

13 April 2019

On this day in 1909 Stan Ulam was born.

"Knowing what is big and what is small is more important than being able to solve partial differential

equations." - Ulam.

A. Dermenjian (UQÀM)

The facial weak order and its lattice of quotients

13 Apr 2019 1/5

(4) (E) (E)

Coxeter Systems Motivation

History and Background

■ Finite Coxeter System (W, S) such that

$$W := \langle s \in S \mid (s_i s_j)^{m_{i,j}} = e \text{ for } s_i, s_j \in S
angle$$

where $m_{i,j} \in \mathbb{N}^{\star}$ and $m_{i,j} = 1$ only if i = j.

• A *Coxeter diagram* Γ_W for a Coxeter System (W, S) has S as a vertex set and an edge labelled $m_{i,j}$ when $m_{i,j} > 2$.

$$m_{i,j}$$

 s_i s_j

Example

$$W_{B_3} = \left\langle s_1, s_2, s_3 \mid s_1^2 = s_2^2 = s_3^2 = (s_1 s_2)^4 = (s_2 s_3)^3 = (s_1 s_3)^2 = e \right\rangle$$

$$\Gamma_{B_3} : \underbrace{4}_{s_1} \underbrace{5}_{s_2} \underbrace{5}_{s_3}$$

A. Dermenjian (UQÀM)

Coxeter Systems Motivation

History and Background

• Finite Coxeter System (W, S) such that

$$W := \langle s \in S \mid (s_i s_j)^{m_{i,j}} = e \text{ for } s_i, s_j \in S
angle$$

where $m_{i,j} \in \mathbb{N}^{\star}$ and $m_{i,j} = 1$ only if i = j.

• A *Coxeter diagram* Γ_W for a Coxeter System (W, S) has S as a vertex set and an edge labelled $m_{i,j}$ when $m_{i,j} > 2$.

Example $W_{A_n} = S_{n+1}$, symmetric group. Γ_{A_n} : $\overbrace{s_1}^{\bullet}$ $\overbrace{s_2}^{\bullet}$ $\overbrace{s_3}^{\bullet}$ S_{n-1} $\overbrace{s_n}^{\bullet}$ A. Dermeniian (UQAM) The facial weak order and its lattice of quotients 13 Apr 2019

Coxeter Systems Motivation

History and Background

■ Finite Coxeter System (W, S) such that

$$W := \langle s \in S \mid (s_i s_j)^{m_{i,j}} = e \text{ for } s_i, s_j \in S
angle$$

where $m_{i,j} \in \mathbb{N}^*$ and $m_{i,j} = 1$ only if i = j.

• A *Coxeter diagram* Γ_W for a Coxeter System (W, S) has S as a vertex set and an edge labelled $m_{i,j}$ when $m_{i,j} > 2$.

$$s_i$$
 s_j

Example

 $W_{l_2(m)} = \mathcal{D}(m)$, dihedral group of order 2*m*.

$$\Gamma_{I_2(m)}: \qquad \underbrace{m}_{S_1} \quad \underbrace{s_2}_{S_2}$$

A. Dermenjian (UQÀM)

History and Background

Let (W, S) be a Coxeter system.

Let $w \in W$ such that $w = s_1 \dots s_n$ for some $s_i \in S$. We say that w has *length* n, $\ell(w) = n$, if n is minimal.

Example

Let
$$\Gamma_{A_2}$$
: $\stackrel{s}{\bullet}$ $\stackrel{t}{\bullet}$.
 $\ell(stst) = 2$ as $stst = tstt = ts$.

• Let the (right) weak order be the order on the Cayley graph where $\stackrel{W}{\bullet} \stackrel{Ws}{\bullet}$ and $\ell(w) < \ell(ws)$.

13 Apr 2019

• • = • • = •

 $\sim \pi/10^{-2}$

Coxeter Systems Motivation

History and Background

Theorem (Björner [1984])

Let (W, S) be a finite Coxeter system. The weak order is a lattice graded by length.

• For finite Coxeter systems, there exists a longest element in the weak order, w_{\circ} .

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 - 1 gave a local definition of this order using covers,
 - 2 gave a global definition of this order combinatorially, and
 - 3 showed that the poset for this order is a lattice.
- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 - **1** gave a local definition of this order using covers, \checkmark
 - **2** gave a global definition of this order combinatorially, and
 - **3** showed that the poset for this order is a lattice.
- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.
- Problems: Can we find a global definition for this poset, and is it a lattice?

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 - 1 gave a local definition of this order using covers, \checkmark
 - ${f 2}$ gave a global definition of this order combinatorially, and \checkmark
 - 3 showed that the poset for this order is a lattice. \checkmark
- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.
- Problems: Can we find a global definition for this poset, and is it a lattice?

Motivation

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 - gave a local definition of this order using covers,
 gave a global definition of this order combinatorially, and
 - 3 showed that the poset for this order is a lattice. \checkmark
- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.
- Problems: Can we find a global definition for this poset, and is it a lattice?

Parabolic Subgroups

Let $I \subseteq S$.

- $W_I = \langle I \rangle$ is standard parabolic subgroup (long element: $w_{\circ,I}$).
- W^I := {w ∈ W | ℓ(w) ≤ ℓ(ws), for all s ∈ I} is the set of min length coset representatives for W/W_I.
- Unique factorization: $w = w^{I} \cdot w_{I}$ with $w^{I} \in W^{I}$, $w_{I} \in W_{I}$.
- By convention in this talk xW_I means $x \in W^I$.
- Coxeter complex \mathcal{P}_W the abstract simplicial complex whose faces are all the standard parabolic cosets of W.

Local Definition Global Definition Root Inversion Set Equivalence

Facial Weak Order

Let (W, S) be a finite Coxeter system.

Definition (Krob et.al. [2001, type A], Palacios, Ronco [2006])

The *(right) facial weak order* is the order \leq_F on the Coxeter complex \mathcal{P}_W defined by cover relations of two types:

(1)
$$xW_I \leqslant xW_{I\cup\{s\}}$$
 if $s \notin I$ and $x \in W^{I\cup\{s\}}$

$$(2) \qquad xW_{I} \lessdot xw_{\circ,I}w_{\circ,I\smallsetminus\{s\}}W_{I\smallsetminus\{s\}} \qquad \text{if } s \in I,$$

where $I \subseteq S$ and $x \in W^{I}$.

A B A A B A

Local Definition Global Definition Root Inversion Set Equivalence

Facial weak order example

(1) $xW_I < xW_{I \cup \{s\}}$ if $s \notin I$ and $x \in W^{I \cup \{s\}}$ (2) $xW_I < xw_{\circ,I}w_{\circ,I \smallsetminus \{s\}}W_{I \smallsetminus \{s\}}$ if $s \in I$

Local Definition Global Definition Root Inversion Set Equivalence

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 - gave a local definition of this order using covers, ✓
 - 2 gave a global definition of this order combinatorially, and √
 3 showed that the poset for this order is a lattice. √
- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.
- Problems: Can we find a global definition for this poset, and is it a lattice?

Local Definition Global Definition Root Inversion Set Equivalence

Facial Intervals

Proposition (Björner, Las Vergas, Sturmfels, White, Ziegler '93)

Let (W, S) be a finite Coxeter system and xW_I a standard parabolic coset. Then there exists a unique interval $[x, xw_{\circ,I}]$ in the weak order such that

$$xW_I = [x, xw_{\circ, I}].$$

Local Definition Global Definition Root Inversion Set Equivalence

Global Definition

Definition

Let $\leq_{F'}$ be the order on the Coxeter complex \mathcal{P}_W defined by

$$xW_I \leq_{F'} yW_J \Leftrightarrow x \leq_R y$$
 and $xw_{\circ,I} \leq_R yw_{\circ,J}$

Local Definition Global Definition Root Inversion Set Equivalence

Root System

- Let $(V, \langle \cdot, \cdot \rangle)$ be a real Euclidean space.
- Let W be a group generated by a set of reflections S. $W \hookrightarrow O(V)$ gives representation as a finite reflection group.
- \blacksquare The reflection associated to $\alpha \in \mathcal{V} \backslash \{ \mathbf{0} \}$ is

$$s_lpha(oldsymbol{v}) = oldsymbol{v} - rac{2 \, \langle oldsymbol{v}, lpha
angle}{||lpha||^2} lpha \quad (oldsymbol{v} \in oldsymbol{V})$$

- A root system is $\Phi := \{ \alpha \in V \mid s_{\alpha} \in W, ||\alpha|| = 1 \}$
- We have Φ = Φ⁺ ⊔ Φ[−] decomposable into positive and negative roots.

13 Apr 2019

 $13/10^{10}$

Local Definition Global Definition Root Inversion Set Equivalence

Relationship between Root Systems and Coxeter Systems $W_{A_2} = \langle s, t \mid s^2 = t^2 = (st)^3 = e \rangle \Gamma_{A_2} : \overset{s}{\bullet} \overset{t}{\bullet}$

A. Dermenjian (UQÀM)

The facial weak order and its lattice of quotients

13 Apr 2019

Local Definition Global Definition Root Inversion Set Equivalence

Relationship between Root Systems and Coxeter Systems $W_{A_2} = \langle s, t \mid s^2 = t^2 = (st)^3 = e \rangle \ \Gamma_{A_2} : \bullet t \bullet$ $Perm(W) = \{w(x) \mid w \in W\}$

13 Apr 2019

 $14/10^{10}$

Local Definition Global Definition Root Inversion Set Equivalence

Relationship between Root Systems and Coxeter Systems $W_{A_2} = \langle s, t \mid s^2 = t^2 = (st)^3 = e \rangle \ \Gamma_{A_2} : \overset{s}{\bullet} \overset{t}{\bullet} \overset{t}{\bullet}$ $\operatorname{Perm}(W) = \{w(x) \mid w \in W\}$

13 Apr 2019

 $14/10^{10}$

Local Definition Global Definition Root Inversion Set Equivalence

Relationship between Root Systems and Coxeter Systems $W_{A_2} = \langle s, t \mid s^2 = t^2 = (st)^3 = e \rangle \ \Gamma_{A_2} : \overset{s}{\bullet} \overset{t}{\bullet} \overset{t}{\bullet}$ $\operatorname{Perm}(W) = \{w(x) \mid w \in W\}$

A. Dermenjian (UQÀM)

The facial weak order and its lattice of quotients

12 /

 $14/10^{1}$

Local Definition Global Definition Root Inversion Set Equivalence

Relationship between Root Systems and Coxeter Systems $W_{A_2} = \langle s, t \mid s^2 = t^2 = (st)^3 = e \rangle \ \Gamma_{A_2} : \bullet t \bullet$ $Perm(W) = \{w(x) \mid w \in W\}$

13 Apr 2019

Local Definition Global Definition Root Inversion Set Equivalence

Inversion Sets

Let (W, S) be a Coxeter system. Define *(left) inversion sets* as the set $N(w) := \Phi^+ \cap w(\Phi^-)$.

Example

Let
$$\Gamma_{A_2}$$
: $\overset{s}{\bullet}$, with Φ given by the roots

$$\mathbf{N}(ts) = \Phi^+ \cap ts(\Phi^-)$$

$$= \Phi^+ \cap \{\alpha_t, \gamma, -\alpha_s\}$$

$$= \{\alpha_t, \gamma\}$$

 $15/10^{10}$

< □ > < □ > < □ > < □ > < □ > < □ >

Local Definition Global Definition Root Inversion Set Equivalence

Inversion Sets

Let (W, S) be a Coxeter system. Define *(left) inversion sets* as the set $N(w) := \Phi^+ \cap w(\Phi^-)$.

Example

Let
$$\Gamma_{A_2}$$
: $\overset{s}{\bullet}$, with Φ given by the roots

$$\mathbf{N}(ts) = \Phi^+ \cap ts(\Phi^-)$$

$$= \Phi^+ \cap \{\alpha_t, \gamma, -\alpha_s\}$$

$$= \{\alpha_t, \gamma\}$$

A. Dermenjian (UQÀM)

13 Apr 2019

 $15/10^{10}$

< □ > < □ > < □ > < □ > < □ > < □ >

Local Definition Global Definition Root Inversion Set Equivalence

Inversion Sets

Let (W, S) be a Coxeter system. Define *(left) inversion sets* as the set $N(w) := \Phi^+ \cap w(\Phi^-)$.

Example

Let
$$\Gamma_{A_2}$$
: $\overset{s}{\bullet}$, with Φ given by the roots
 $\mathbf{N}(ts) = \Phi^+ \cap ts(\Phi^-)$
 $= \Phi^+ \cap \{\alpha_t, \gamma, -\alpha_s\}$
 $= \{\alpha_t, \gamma\}$

A. Dermenjian (UQÀM)

13 Apr 2019

< □ > < □ > < □ > < □ > < □ > < □ >

 $15/10^{10}$

Local Definition Global Definition Root Inversion Set Equivalence

Inversion Sets

Let (W, S) be a Coxeter system. Define *(left) inversion sets* as the set $N(w) := \Phi^+ \cap w(\Phi^-)$.

Example

Let
$$\Gamma_{A_2}$$
: $\overset{s}{\bullet}$, with Φ given by the roots

$$\mathbf{N}(ts) = \Phi^+ \cap ts(\Phi^-)$$

$$= \Phi^+ \cap \{\alpha_t, \gamma, -\alpha_s\}$$

$$= \{\alpha_t, \gamma\}$$

A. Dermenjian (UQÀM)

13 Apr 2019

 $15/10^{10}$

< □ > < □ > < □ > < □ > < □ > < □ >

Local Definition Global Definition Root Inversion Set Equivalence

Inversion Sets

Let (W, S) be a Coxeter system. Define *(left) inversion sets* as the set $N(w) := \Phi^+ \cap w(\Phi^-)$.

Example

Let
$$\Gamma_{A_2}$$
: $\overset{s}{\bullet}$, with Φ given by the roots

$$\mathbf{N}(ts) = \Phi^+ \cap ts(\Phi^-)$$

$$= \Phi^+ \cap \{\alpha_t, \gamma, -\alpha_s\}$$

$$= \{\alpha_t, \gamma\}$$

A. Dermenjian (UQÀM)

13 Apr 2019

 $15/10^{10}$

< □ > < □ > < □ > < □ > < □ > < □ >

Local Definition Global Definition Root Inversion Set Equivalence

Weak order and Inversion sets

Given $w, u \in W$ then $w \leq_R u$ if and only if $\mathbf{N}(w) \subseteq \mathbf{N}(u)$.

• • = • • = •

Local Definition Global Definition Root Inversion Set Equivalence

Root Inversion Set

Definition (Root Inversion Set)

Let xW_I be a standard parabolic coset. The *root inversion set* is the set

$$\mathsf{R}(xW_I) := x(\Phi^- \cup \Phi_I^+)$$

Note that $N(x) = \mathbf{R}(xW_{\varnothing}) \cap \Phi^+$.

Local Definition Global Definition Root Inversion Set Equivalence

Root Inversion Set

Example

$$\mathbf{R}(sW_{\{t\}}) = s(\Phi^- \cup \Phi^+_{\{t\}})$$

= $s(\{-\alpha_s, -\alpha_t, -\gamma\} \cup \{\alpha_t\})$
= $\{\alpha_s, -\gamma, -\alpha_t, \gamma\}$

Local Definition Global Definition Root Inversion Set Equivalence

Root Inversion Set

Example

$$\mathbf{R}(sW_{\{t\}}) = s(\Phi^- \cup \Phi^+_{\{t\}})$$

= $s(\{-\alpha_s, -\alpha_t, -\gamma\} \cup \{\alpha_t\})$
= $\{\alpha_s, -\gamma, -\alpha_t, \gamma\}$

Local Definition Global Definition Root Inversion Set Equivalence

Root Inversion Set

Example

$$\mathbf{R}(sW_{\{t\}}) = s(\Phi^- \cup \Phi^+_{\{t\}})$$

= $s(\{-\alpha_s, -\alpha_t, -\gamma\} \cup \{\alpha_t\})$
= $\{\alpha_s, -\gamma, -\alpha_t, \gamma\}$

Local Definition Global Definition Root Inversion Set Equivalence

Root Inversion Set

Example

$$\mathbf{R}(sW_{\{t\}}) = s(\Phi^- \cup \Phi^+_{\{t\}})$$

= $s(\{-\alpha_s, -\alpha_t, -\gamma\} \cup \{\alpha_t\})$
= $\{\alpha_s, -\gamma, -\alpha_t, \gamma\}$

A. Dermenjian (UQÀM)

The facial weak order and its lattice of quotients

13 Apr 2019 1

l7/Ack(100, 100

Local Definition Global Definition Root Inversion Set Equivalence

Equivalent definitions

Theorem (D., Hohlweg, Pilaud [2016])

The following conditions are equivalent for two standard parabolic cosets xW_I and yW_J in the Coxeter complex \mathcal{P}_W

1
$$xW_I \leq_F yW_J$$

2 $\mathbf{R}(xW_I) \smallsetminus \mathbf{R}(yW_J) \subseteq \Phi^-$ and $\mathbf{R}(yW_J) \smallsetminus \mathbf{R}(xW_I) \subseteq \Phi^+$.

3
$$x \leq_R y$$
 and $xw_{\circ,I} \leq_R yw_{\circ,J}$.

< □ ▷ < 큔 ▷ < 클 ▷ < 클 ▷ ents 13 Apr 2019 18

18/Ack(100, 100

Lattice Lattice Congruences Join-Irreducibles Further works

Motivation

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 - 1 gave a local definition of this order using covers, \checkmark
 - 2 gave a global definition of this order combinatorially, and \checkmark
 - 3 showed that the poset for this order is a lattice. \checkmark
- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.
- Problems: Can we find a global definition for this poset, and is it a lattice?

13 Apr 2019

• • = • • = •

20/a lot

Lattice Lattice Congruences Join-Irreducibles Further works

Facial weak order lattice

Theorem (D., Hohlweg, Pilaud [2016])

The facial weak order (\mathcal{P}_W, \leq_F) is a lattice with the meet and join of two standard parabolic cosets $\times W_I$ and yW_J given by:

 $xW_{I} \wedge yW_{J} = z_{\wedge}W_{K_{\wedge}},$ $xW_{I} \vee yW_{J} = z_{\vee}W_{K_{\vee}}.$

where,

 $\begin{array}{ll} z_{\scriptscriptstyle \wedge} = x \wedge y & \text{and} & K_{\scriptscriptstyle \wedge} = D_L(z_{\scriptscriptstyle \wedge}^{-1}(xw_{\circ, I} \wedge yw_{\circ, J})), \text{ and} \\ z_{\scriptscriptstyle \vee} = xw_{\circ, I} \vee yw_{\circ, J} & \text{and} & K_{\scriptscriptstyle \vee} = D_L(z_{\scriptscriptstyle \vee}^{-1}(x \vee y)) \end{array}$

Corollary (D., Hohlweg, Pilaud [2016])

The weak order is a sublattice of the facial weak order lattice.

A. Dermenjian (UQÀM)

The facial weak order and its lattice of quotients

13 Apr 2019 21/a

Lattice Lattice Congruences Join-Irreducibles Further works

< □ > < /□ >

< 콜 ▶ < 콜 ▶ 13 Apr 2010

22/a lot

э

Lattice Lattice Congruences Join-Irreducibles Further works

Example: A_2 and B_2

Example (Meet example)

Recall

 $\begin{aligned} xW_{I} \wedge yW_{J} &= z_{\wedge}W_{K_{\wedge}} \\ \text{where} \quad z_{\wedge} &= x \wedge y \\ K_{\wedge} &= D_{L}(z_{\wedge}^{-1}(xw_{\circ,I} \wedge yw_{\circ,J})) \end{aligned}$

We compute $ts \wedge stsW_{\{t\}}$.

$$egin{aligned} & z_\wedge = ts \wedge sts = e \ & \mathcal{K}_\wedge = D_L(z_\wedge^{-1}(tsw_{\circ,\emptyset} \wedge stsw_{\circ,t})) \ & = D_L(e(ts \wedge stst)) \ & = D_L(ts) = \{t\}. \end{aligned}$$

Lattice Lattice Congruences Join-Irreducibles Further works

Möbius function

Recall that the *Möbius function* of a poset (P, \leq) is the function $\mu : P \times P \to \mathbb{Z}$ defined inductively by

$$\mu(p,q) \coloneqq egin{cases} 1 & ext{if } p=q, \ -\sum\limits_{p\leq r< q} \mu(p,r) & ext{if } p$$

Proposition (D., Hohlweg, Pilaud [2016])

The Möbius function of the facial weak order is given by

$$\mu(eW_{\varnothing}, yW_J) = egin{cases} (-1)^{|J|}, & \textit{if } y = e, \ 0, & otherwise \end{cases}$$

Lattice Lattice Congruences Join-Irreducibles Further works

Quotients of the facial weak order

★ Ξ >

Lattice Lattice Congruences Join-Irreducibles Further works

Lattice Congruences

Definition

A *lattice congruence* is an equivalence relation \equiv on a lattice (L, \leq) such that for each $x_1 \equiv x_2$ and $y_1 \equiv y_2$ then

1 $x_1 \wedge y_1 \equiv x_2 \wedge y_2$, and

$$2 \quad x_1 \lor y_1 \equiv x_2 \lor y_2.$$

Theorem (D., Hohlweg, Pilaud [2016])

Given a lattice congruence \equiv on (W, \leq_R) , the equivalence classes on (\mathcal{P}_W, \leq_F) defined by

$$xW_I \equiv yW_J \Leftrightarrow x \equiv y \text{ and } xw_{\circ,I} \equiv yw_{\circ,J}$$

give us a lattice congruence.

Lattice Lattice Congruences Join-Irreducibles Further works

Facial Boolean Lattice

Corollary (D., Hohlweg, Pilaud [2016])

Let the (left) root descent set of a coset xW_1 be the set of roots

 $\mathbf{D}(xW_l) := \mathbf{R}(xW_l) \cap \pm \Delta \subseteq \Phi.$

Let $xW_I \equiv^{\text{des}} yW_J$ if and only if $\mathbf{D}(xW_I) = \mathbf{D}(yW_J)$.

Lattice Lattice Congruences Join-Irreducibles Further works

Facial Cambrian Lattice

Corollary (D., Hohlweg, Pilaud [2016])

Let c be any Coxeter element of W. Let \equiv^{c} be the c-Cambrian congruence (due to Reading [Cambrian Lattice, 2004]). Then let $xW_{I} \equiv^{c} yW_{J} \Leftrightarrow x \equiv^{c} y$ and $xw_{\circ,I} \equiv^{c} yw_{\circ,J}$.

• = • •

Lattice Lattice Congruences Join-Irreducibles Further works

Join-Irreducibles

A *join-irreducible* element γ in a poset (P, \leq) is an element with a unique descent γ_{\star} .

Proposition (D., Hohlweg, Pilaud [2016])

A standard parabolic coxet xW_I is join-irreducible in the facial weak order if and only if we have one of the two following cases

- $I = \emptyset$ and x is join-irreducible in the right weak order, or
- $I = \{s\}$ and xs is join-irreducible in the right weak order.

・ 何 ト ・ ヨ ト ・ ヨ ト

Lattice Lattice Congruences Join-Irreducibles Further works

Further Works

- Already extended to hyperplane arrangements and oriented matroids.
- Can we extend the facial weak order to other objects such as arbitrary polytopes?
- Is the facial weak order congruence uniform?

