Aram Dermenjian

University of Manchester

29 November 2022

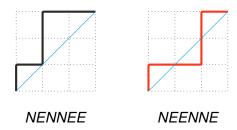
A (brief) history of the main object.

Dyck paths

Dyck path of height n: Path from (0,0) to (n, n) using only north/east steps, staying weakly above the main diagonal.

Example

Dyck path of height 3:

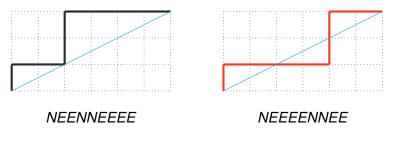


m-Dyck paths

m-Dyck path of height n (Bergeron and Préville-Ratelle): Path from (0,0) to (n,mn) using only north/east steps, staying weakly above the $\frac{1}{m}$ diagonal.

Example

2-Dyck path of height 3:

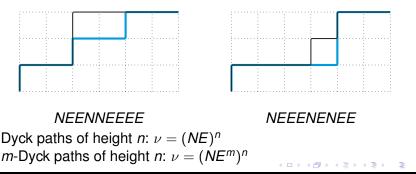


ν -Dyck paths

Let ν be a path from (0,0) to (s_E, s_N) where $s_E, s_N \in \mathbb{N}$. ν -Dyck path (Préville-Ratelle and Viennot): Path from (0,0) to (s_E, s_n) using only north/east steps, staying weakly above ν .

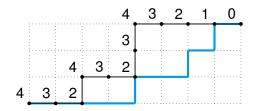
Example

 ν -Dyck paths:



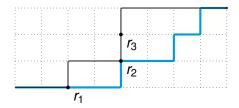
Horizontal distance

Horizontal distance: max number of east steps before passing ν .



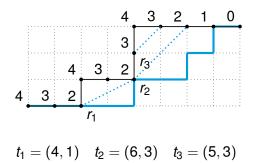
Right hand points

i-th right hand point r_i: point before *i*-th north step.



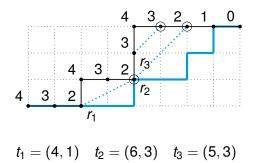
Touch points

i-th touch point t_i : first point after r_i with the same horizontal distance.



Touch points

i-th touch point t_i : first point after r_i with the same horizontal distance.

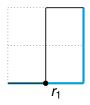


Touch points - Pop quiz

Where is t_1 ?

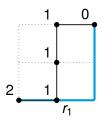
Touch points - Pop quiz

Where is t_1 ?



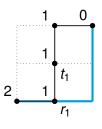
Touch points - Pop quiz

Where is t_1 ?



Touch points - Pop quiz

Where is t_1 ?



 $t_1 = (1, 1)$

From one path to another

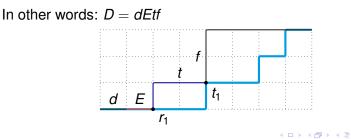
Let *D* be a ν -Dyck path.

If r_i is preceded by an east step, then let:

d = subword of D from (0,0) up until the east step before r_i

t = subword of *D* from r_i up until t_i

f = subword of D from t_i up until (s_E , s_N)



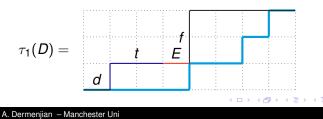
From one path to another

d = subword of D from (0,0) up until the east step before r_i

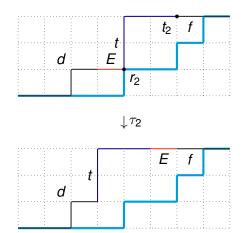
- t = subword of *D* from r_i up until t_i
- f = subword of D from t_i up until (s_E , s_N)

D = dEtf

Putting the *E* before r_i after t_i we get a new ν -Dyck path: $\tau_i(D) = dt E f$.



From one path to another



ν -Tamari order

Let \mathbb{T}_{ν} be the poset whose elements are $\nu\text{-}\mathsf{Dyck}$ paths, ordered by:

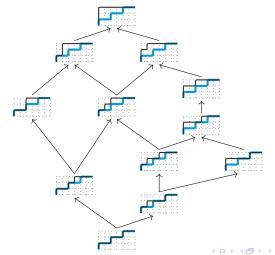
 $D \leq_T \tau_i(D)$ whenever $\tau_i(D)$ exists.

Theorem (Préville-Ratelle, Viennot 2014) For any path ν , the poset \mathbb{T}_{ν} is a lattice.

Therefore, \mathbb{T}_{ν} is called the ν -Tamari lattice.

ν -Tamari lattice example

Let $\nu = NEENEE$. (These are 2-Dyck paths of height 3.)



Maximal degree subposet

Let *D* be a ν -Dyck path.

out-degree of D: number of elements which cover D.

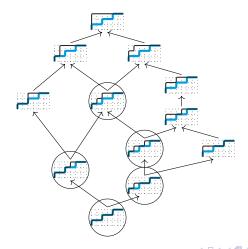
in-degree of D: number of elements which are covered by *D*.

 $\mathbb{T}_{\nu_{out}} =$ subposet of \mathbb{T}_{ν} which have maximal out-degree.

 $\mathbb{T}_{\nu_{in}}$ = subposet of \mathbb{T}_{ν} which have maximal in-degree.

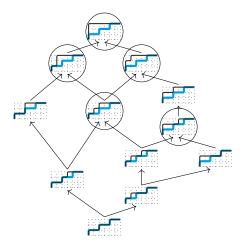
Out-degree example

Let $\nu = NEENEE$. (These are 2-Dyck paths of height 3.)

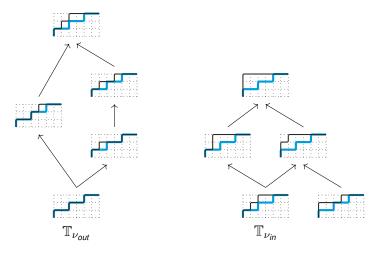


In-degree example

Let $\nu = NEENEE$. (These are 2-Dyck paths of height 3.)



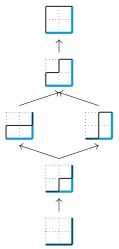
The maximal subposets



(4) (5) (4) (5)

< 4 →

Another ν -Tamari lattice Let $\nu = EENN$.

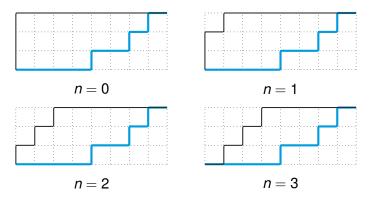


What are the maximal in/out-degrees?

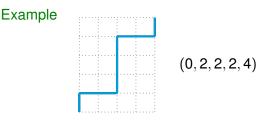
Staircase shape ν -Dyck path

A ν -Dyck path *D* is a *staircase shape of size n* if $D = N^{a}(EN)^{n}E^{b}$ with $a \ge 0$ and $b \ge 0$.

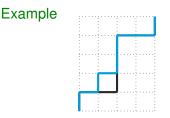
Example



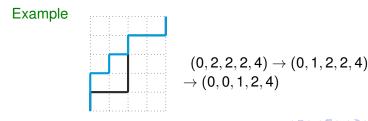
- 1. Find first $j \in \mathbb{Z}$ such that $i \leq j$.
- 2. If no such *j* exists, done! Else, assume *j* in *d*-th component and replace with *i*.
- 3. For all other components which are equal to *i*, replace with 0 and pull zeroes forward.
- 4. Let Λ be this new vector and proceed with induction



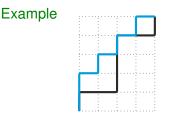
- 1. Find first $j \in \mathbb{Z}$ such that $i \leq j$.
- 2. If no such *j* exists, done! Else, assume *j* in *d*-th component and replace with *i*.
- 3. For all other components which are equal to *i*, replace with 0 and pull zeroes forward.
- 4. Let Λ be this new vector and proceed with induction



- 1. Find first $j \in \mathbb{Z}$ such that $i \leq j$.
- 2. If no such *j* exists, done! Else, assume *j* in *d*-th component and replace with *i*.
- 3. For all other components which are equal to *i*, replace with 0 and pull zeroes forward.
- 4. Let Λ be this new vector and proceed with induction



- 1. Find first $j \in \mathbb{Z}$ such that $i \leq j$.
- 2. If no such *j* exists, done! Else, assume *j* in *d*-th component and replace with *i*.
- 3. For all other components which are equal to *i*, replace with 0 and pull zeroes forward.
- 4. Let Λ be this new vector and proceed with induction



$$(0,2,2,2,4)
ightarrow (0,1,2,2,4)
ightarrow (0,0,1,2,4)
ightarrow (0,0,1,2,3)$$

Maximal staircase shape ν -Dyck path

Let ξ_{ν} be the staircase shape ν -Dyck path of maximal size σ_{ν} .

Theorem (D. 2022)

Let ν be a path. The maximal in-degree and maximal out-degree in \mathbb{T}_{ν} is equal to σ_{ν} .

Maximal staircase shape ν -Dyck path

Let ξ_{ν} be the staircase shape ν -Dyck path of maximal size σ_{ν} .

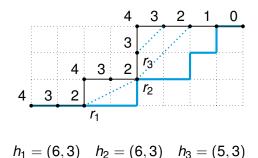
Theorem (D. 2022)

Let ν be a path. The maximal in-degree and maximal out-degree in \mathbb{T}_{ν} is equal to σ_{ν} .

Proof idea: Out-degree is relatively easy. Consider the r_i with east steps before.

Hit points

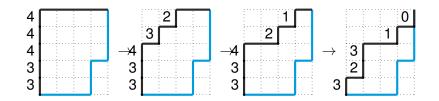
i-th hit point h_i : first point after r_i with the same horizontal distance that is followed by an east step or is the final point.



Going down in the *v*-Tamari order

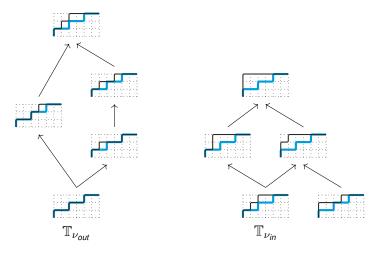
Theorem (D. 2022)

Let D be a ν -Dyck path and let r_i , t_i and h_i be its respective right hand, touch and hit points. Then there exists a ν -Dyck path E such that $E \ll_T D$ if and only if there exists i such that $t_i = h_i$ and horizontal distance of r_i is non-zero. In this case $\tau_i(E) = D$. In-degree proof idea



These posets look familiar!

The maximal subposets

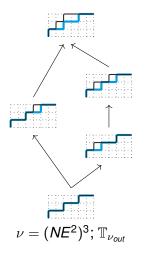


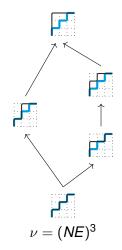
(4) (5) (4) (5)

< 4 →

Maximal degree subposets of *v*-Tamari lattices

The maximal subposets





< E

< 🗇 🕨 < 🖻 🕨

Out-degree subposet

We focus on *m*-Dyck paths of height *n*. Let $\mathbb{T}_{n,m}$ by the ν -Tamari lattice for $\nu = (NE^m)^n$.

Theorem (D. 2022)

There exists a poset isomorphism:

$$\mathbb{T}_{n,m_{out}} \to \mathbb{T}_{n,m-1}$$

The map "removes"/"adds" the maximal staircase in the top left corner.



What about in-degree subposet?

From one path to another

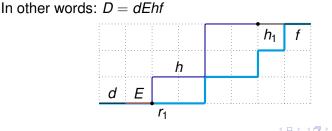
Let *D* be a ν -Dyck path.

If r_i is preceded by an east step, then let:

d = subword of D from (0,0) up until the east step before r_i

h = subword of D from r_i up until h_i

f = subword of *D* from h_i up until (s_E, s_N)



From one path to another

d = subword of *D* from (0,0) up until the east step before r_i

h = subword of *D* from r_i up until h_i

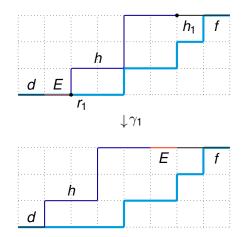
$$f =$$
 subword of D from h_i up until (s_E, s_N)

D = dEhf

Putting the *E* before r_i after h_i we get a new ν -Dyck path: $\gamma_i(D) = dhEf$.



From one path to another



- E - N

ν -Greedy order

Let \mathbb{G}_{ν} be the poset whose elements are $\nu\text{-}\mathsf{Dyck}$ paths, ordered by:

 $D \leq_G \gamma_i(D)$ whenever $\gamma_i(D)$ exists.

 \mathbb{G}_{ν} is called the ν -*Greedy poset*.

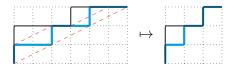
Note: This is the same as the ν -Tamari order except we use hit points instead of touch points.

In-degree subposet

Theorem (D. 2022) There exists a poset isomorphism:

$$\mathbb{T}_{n,m_{in}} \to \mathbb{G}_{n,m-1}$$

The map removes an east step before each hit point. The reverse map adds an east step at each touch point.

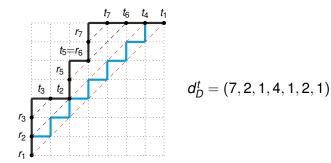


Touch distance function

Definition (Bousquet-Mélou, Fusy, Préville-Ratelle 2012)

Let *D* be a Dyck path. If *a* and *b* have same horizontal distance, $\ell(a, b)$ is diagonal distance between them.

Touch distance vector $d_D^t = (\ell(r_1, t_1), \dots, \ell(r_n, t_n)).$



Touch distance function

Definition (Bousquet-Mélou, Fusy, Préville-Ratelle 2012)

Let *D* be a Dyck path. If *a* and *b* have same horizontal distance, $\ell(a, b)$ is diagonal distance between them. *Touch distance vector* $d_D^t = (\ell(r_1, t_1), \dots, \ell(r_n, t_n)).$

Theorem (Bousquet-Mélou, Fusy, Préville-Ratelle 2012)

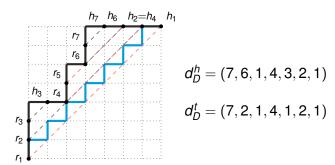
$$d_D^t \leq d_{D'}^t \iff D \leq_T D'$$

Hit distance function

Definition

Let *D* be a Dyck path. If *a* and *b* have same horizontal distance, $\ell(a, b)$ is diagonal distance between them.

Hit distance vector $d_D^h = (\ell(r_1, h_1), \dots, \ell(r_n, h_n)).$



Hit distance function

Definition

Let *D* be a Dyck path. If *a* and *b* have same horizontal distance, $\ell(a, b)$ is diagonal distance between them. *Hit distance vector* $d_D^h = (\ell(r_1, h_1), \dots, \ell(r_n, h_n)).$

Theorem (D. 2022)

$$D \leq_G D' \iff d_D^h \leq d_{D'}^h$$
 and $d_D^t \leq d_{D'}^t$

Proof idea

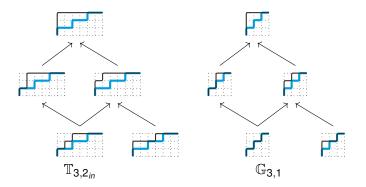
Theorem (D. 2022)

There exists a poset isomorphism:

$$\mathbb{T}_{n,m_{in}} \to \mathbb{G}_{n,m-1}$$

- Greedy to Tamari is "easy".
- Convert from *m*-Dyck path of height *n* to Dyck path of height *mn*.
- Do conversion to smaller Dyck paths in that world.
- Show Greedy order holds using distance functions.
- Go to the world of m 1-Dyck paths of height n.

The maximal subposets



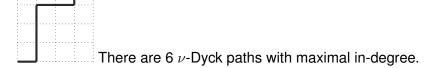
-

< 17 ▶

What about arbitrary ν ?

What about arbitrary ν ?

Unfortunately, there are ν for which $\mathbb{T}_{\nu_{in}}$ is not in *set* bijection with any ν' weakly above ν .



What about arbitrary ν ?

Unfortunately, there are ν for which $\mathbb{T}_{\nu_{in}}$ is not in *set* bijection with any ν' weakly above ν .

Example $\nu = ENNNEENE$ There are 6 ν -Dyck paths with maximal in-degree.

Conjecture The number of elements in $\mathbb{T}_{\nu_{in}}$ is equal to the number of elements in $\mathbb{T}_{\nu_{out}}$.

Thanks!