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Welcome!
Thanks for coming to my poster talk! You can either go through
the slides like “normal”, or jump around using the links in green
(ex: Go to directory) or in the bottom-right corner of every slide .

If you have any questions, don’t hesitate to ask Aram!

Start with the directory

Start with the main result!

arXiv: 2008.03794
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Sign vectors
A sign vector is a vector in Vn = {+, 0,−}n which give the sign
of a generic point in Rn.

Example

(0, 0)

(+, +)

(+, 0)

(0, +)

(−, +)

(+, −)

(−, 0)

(0, −)

(−, −)
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Real Projective Space
Real Projective space Pn is quotient of Rn+1\ {0} under
equivalence relation x ∼ λx for λ ∈ R.

Example

P1

x1

x2

x3

x1 x2 x3∞ ∞
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Projective Sign Vectors
A projective sign vector is an equivalence class of sign vectors
in projective space where ω ∼ ω′ iff ω = ω′ or ω = −ω′.

PVn :=
(
Vn\ {0}n

)
/ ∼ ∼= {ω ∈ Vn : First non-zero entry of ω is +} .

Let Pn denote the poset (PVn, <) where for ω, ω′ ∈ PVn:

ω′ ≤ ω ⇐⇒ ±ω′ ⊆ ω

Example

V2 = {(+, +), (+, 0), (+, −),
(0, +), (0, 0), (0, −),

(−, +), (−, 0), (−, −)}
↓

PV2 = {(+, +), (+, 0), (+, −), (0, +)} P2

(+, 0) (0, +)

(+, +) (+, −)

∼ (0, −)
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Order complex (of a poset)
Simplicial complex ∆ - A collection of sets s.t. σ ∈ ∆ and τ ⊆ σ
implies τ ∈ ∆.
The sets are called faces. Maximal sets are called facets.
Order complex ∆(P) of a poset P - Simplicial complex where
faces are chains in P.

Example

P2

(+, 0) (0, +)

(+, +) (+, −)

∅

{(+, 0)}{(0, +)}{(+, +)}{(+, −)}

{
(+,+)

|
(+,0)

} {
(+,−)

|
(+,0)

}{
(+,+)

|
(0,+)

} {
(+,−)

|
(0,+)

}

∆(P2)
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f -vector and h-vector
∆ a d-dim simplicial complex.
f -vector is the vector f (∆) = (f−1, f0, f1, . . . , fd) where
fi = number of i-dim faces.
h-vector is the vector h(∆) = (h0, h1, . . . , hd+1) where
hk =

∑k
i=0(−1)k−i(d−i

k−i
)
fi−1.

Example

∅

{(+, 0)}{(0, +)}{(+, +)}{(+, −)}

{
(+,+)

|
(+,0)

} {
(+,−)

|
(+,0)

}{
(+,+)

|
(0,+)

} {
(+,−)

|
(0,+)

}
f (∆(P2)) = (1, 4, 4)
h(∆(P2)) = (1, 2, 1)

∆(P2)
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Partitionable
A simplicial complex ∆ is partitionable if ∆ =

⊔
[Gi , Fi ] where Fi

is a facet.

Proposition (Stanley)

Let ∆ be a partitionable simplicial complex. Then
hi(∆) = |

{
j : |Gj | = i

}
|.

∅

{(+, 0)}{(0, +)} {(+, +)} {(+, −)}

{
(+,+)

|
(+,0)

} {
(+,−)

|
(+,0)

}{
(+,+)

|
(0,+)

} {
(+,−)

|
(0,+)

}

∆(P2)

h(∆(P2)) = (1, 2, 1)
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Coxeter groups

Type An

The elements in
type An Coxeter
groups can be rep-
resented as per-
mutations in Sn+1.

Example

57238146 ∈ A7

Type Bn

The elements in
type Bn Coxeter
groups can be rep-
resented as signed
permutations of
Sn.

Example

57̄238̄1̄46 ∈ B8

Type Dn

The elements in
type Dn Coxeter
groups can be
represented as
even signed per-
mutations of Sn.

Example

57̄23̄8̄1̄46 ∈ D8
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Descents
Type An

For π = π1 . . . πn+1
in An let desA(π)
denote the descent
set of π.

desA(π) =
{i : πi > πi+1}

Example

π = 57238146 ∈ A7

desA(π) = {2, 5}

Type Bn

For π = π1 . . . πn
in Bn let desB(π)
denote the descent
set of π.

desB(π) = desA(0π)

Example

π = 57̄23̄8̄1̄46 ∈ B8

desB(π) = {1, 3, 4}

Type Dn

For π = π1 . . . πn
in Dn let desD(π)
denote the descent
set of π.

desD(π) = desA(π̄2π)

Example

π = 57̄23̄8̄1̄46 ∈ D8

desD(π) = {0, 1, 3, 4}
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Cyclic Sign Variations
Given a sign vector ω ∈ Vn = {+, 0,−}n.

cvar(ω) = number of times ω changes sign, cyclically

i ∈ [n] is a cyclic sign flip of ω if there exists a j such that
ωi−jωi < 0 while ωi−kωi = 0 for all 1 ≤ k < j where ωi = ωi+n.

Example

ω = (+, +,−,−,−,−, +,−)⇒ cvar(ω) = 4

(+, +,−,−,−, 0, +,−) ↔ {1, 3, 7, 8}
1 2 3 4 5 6 7 8
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Main Theorem
Theorem (Bergeron, D., Machacek 2020)

The order complex ∆(Pn) is partitionable with h-vector

hi(∆(Pn)) = |{π ∈ Dn : |desB(π)| = i}| for all 0 ≤ i ≤ n

with Coxeter group of type Dn and descent set, desB, of type B.

Example (n = 2)

π ∈ Dn desB(π)
12 ∅
2̄1̄ {0}
21 {1}
1̄2̄ {0, 1} ∅ h(∆(P2)) = (1, 2, 1)

{(+, 0)}{(0, +)} {(+, +)} {(+, −)}

{
(+,+)

|
(+,0)

} {
(+,−)

|
(+,0)

}{
(+,+)

|
(0,+)

} {
(+,−)

|
(0,+)

}
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Even signed permutations and chains (proof idea)
1. Use cyclic sign variations on the set of negative numbers to get

a sign vector.
2. For each set of increasing sequences, replace signs with 0s to

get a new sign vector.
3. Proceed inductively to get chain.

5|7̄2|3̄|8̄1̄46 min←−→
(57238146, {1, 3, 7, 8})

(+, +, −, −, −, −, +, −)

(+, +, −, −, 0, −, +, −)

(+, 0, −, −, 0, −, 0, −)

(+, 0, 0, −, 0, −, 0, −)
desD(π) = {0, 1, 3, 4}desD(π) = {0, 1, 3, 4}
desB(π) = {1, 3, 4}
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Restriction of variations

PVn,m = {ω ∈ PVn : var(ω) ≤ m}.
Pn,m = (PVn,m, <).
Dn,m = {π ∈ Dn : π has at most m negatives}.

Theorem (Bergeron, D., Machacek 2020)

If m ≤ n − 1 is even then the order complex ∆(Pn,m) is
partitionable. Moreover,

hi(∆(Pn,m)) = |{π ∈ Dn,m : |desB(π)| = i}|

for each 0 ≤ i ≤ n.
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