Aram Dermenjian (Manchester Uni) - Joint with: Nantel Bergeron and John Machacek

Welcome!

Thanks for coming to my poster talk! You can either go through the slides like "normal", or jump around using the links in green (ex: Go to directory) or in the bottom-right corner of every slide . If you have any questions, don't hesitate to ask Aram!

Start with the directory

Start with the main result!

Link to directory

FPSAC 2021

Slides can be found at: dermenjian.com

Aram Dermenjian (Manchester Uni) - Joint with: Nantel Bergeron and John Machacek

Directory of contents Background:

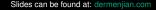
- Sign Vectors
- Real Projective Space
- Projective Sign Vectors
- Order complex
- f-vector
- Partitionable
- Coxeter Groups
- Descents
- Sign Variations

Results:

FPSAC 2021

- Main Result
- Restrictions

Come back at any time

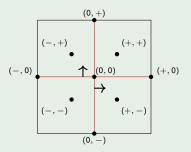


Aram Dermenjian (Manchester Uni) - Joint with: Nantel Bergeron and John Machacek

Sign vectors

A sign vector is a vector in $\mathcal{V}_n = \{+, 0, -\}^n$ which give the sign of a generic point in \mathbb{R}^n .

Example

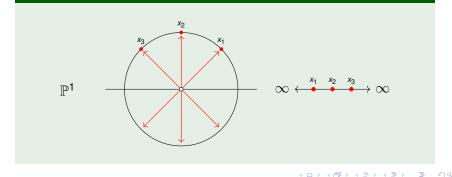


Aram Dermenjian (Manchester Uni) - Joint with: Nantel Bergeron and John Machacek

Real Projective Space

■ *Real Projective space* \mathbb{P}^n is quotient of $\mathbb{R}^{n+1} \setminus \{0\}$ under equivalence relation $x \sim \lambda x$ for $\lambda \in \mathbb{R}$.

Example



Slides can be found at: dermenjian.com

Aram Dermenjian (Manchester Uni) - Joint with: Nantel Bergeron and John Machacek

Projective Sign Vectors

A projective sign vector is an equivalence class of sign vectors in projective space where $\omega \sim \omega'$ iff $\omega = \omega'$ or $\omega = -\omega'$.

 $\mathcal{PV}_n \coloneqq (\mathcal{V}_n \setminus \{\mathbf{0}\}^n) / \sim \cong \{\omega \in \mathcal{V}_n : \text{ First non-zero entry of } \omega \text{ is } +\}.$

Let P_n denote the poset (\mathcal{PV}_n , <) where for $\omega, \omega' \in \mathcal{PV}_n$:

$$\omega' \leq \omega \iff \pm \omega' \subseteq \omega$$

Example

$$\begin{aligned} \mathcal{V}_2 &= \{(+,+),(+,0),(+,-), & (+,+) & (+,-) \\ & (0,+),(0,0),(0,-), & & \uparrow^{(+)} \\ & (-,+),(-,0),(-,-)\} & & \uparrow^{(+)} \\ & \downarrow & (+,0) & (0,+) \sim (0,-) \\ \mathcal{V}_2 &= \{(+,+),(+,0),(+,-),(0,+)\} & P_2 \end{aligned}$$

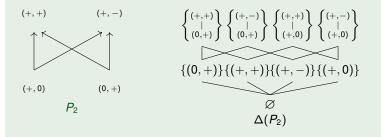
 \mathcal{F}

Aram Dermenjian (Manchester Uni) - Joint with: Nantel Bergeron and John Machacek

Order complex (of a poset)

- Simplicial complex Δ A collection of sets s.t. $\sigma \in \Delta$ and $\tau \subseteq \sigma$ implies $\tau \in \Delta$.
- The sets are called *faces*. Maximal sets are called *facets*.
- Order complex $\Delta(P)$ of a poset P Simplicial complex where faces are chains in P.

Example



Slides can be found at: dermenjian.com

Aram Dermenjian (Manchester Uni) - Joint with: Nantel Bergeron and John Machacek

f-vector and h-vector

• Δ a *d*-dim simplicial complex.

• *f*-vector is the vector $f(\Delta) = (f_{-1}, f_0, f_1, \dots, f_d)$ where

- f_i = number of *i*-dim faces.
- *h-vector* is the vector $h(\Delta) = (h_0, h_1, \dots, h_{d+1})$ where $h_k = \sum_{i=0}^k (-1)^{k-i} {d-i \choose k-i} f_{i-1}$.

Example

 $f(\Delta(P_2)) = (1, 4, 4)$ $h(\Delta(P_2)) = (1, 2, 1)$

FPSAC 2021

Slides can be found at: dermenjian.com

Aram Dermenjian (Manchester Uni) - Joint with: Nantel Bergeron and John Machacek

Partitionable

A simplicial complex Δ is *partitionable* if $\Delta = \bigsqcup [G_i, F_i]$ where F_i is a facet.

Proposition (Stanley)

Let Δ be a partitionable simplicial complex. Then

$$h_i(\Delta) = |\{j : |G_j| = i\}|.$$



Aram Dermenjian (Manchester Uni) - Joint with: Nantel Bergeron and John Machacek

Coxeter groups

Type A_n

The elements in type A_n Coxeter groups can be represented as permutations in \mathfrak{S}_{n+1} .

Type B_n

The elements in type B_n Coxeter groups can be represented as *signed* permutations of \mathfrak{S}_n .

Type D_n

The elements in type D_n Coxeter groups can be represented as *even signed* permutations of \mathfrak{S}_n .

Example	Example	Example
57238146 ∈ <i>A</i> ₇	57238146 ∈ <i>B</i> ₈	$5\bar{7}2\bar{3}\bar{8}\bar{1}46\in \textit{D}_{8}$

Aram Dermenjian (Manchester Uni) - Joint with: Nantel Bergeron and John Machacek

Descents

Type A_n

Type B_n

For $\pi = \pi_1 \dots \pi_{n+1}$ in A_n let $des_A(\pi)$ denote the descent set of π .

 $des_A(\pi) =$

 $\{i : \pi_i > \pi_{i+1}\}$

For $\pi = \pi_1 \dots \pi_n$ in B_n let $des_B(\pi)$ denote the descent set of π .

 $des_B(\pi) = des_A(0\pi)$

Type D_n

For $\pi = \pi_1 \dots \pi_n$ in D_n let $des_D(\pi)$ denote the descent set of π .

 $\operatorname{des}_D(\pi) = \operatorname{des}_A(\bar{\pi}_2 \pi)$

Example

$$\pi = 57238146 \in A_7$$

 $\deg_A(\pi) = \{2, 5\}$

$$\pi = 5\overline{7}2\overline{3}\overline{8}\overline{1}46 \in B_8$$

des $_B(\pi) = \{1, 3, 4\}$

Example

$$\pi = 5\overline{7}2\overline{3}\overline{8}\overline{1}46 \in D_8$$

 $\deg_D(\pi) = \{0, 1, 3, 4\}$

Slides can be found at: dermenjian.com

Aram Dermenjian (Manchester Uni) - Joint with: Nantel Bergeron and John Machacek

Cyclic Sign Variations Given a sign vector $\omega \in \mathcal{V}_n = \{+, 0, -\}^n$.

 $cvar(\omega) =$ number of times ω changes sign, cyclically

 $i \in [n]$ is a *cyclic sign flip* of ω if there exists a *j* such that $\omega_{i-j}\omega_i < 0$ while $\omega_{i-k}\omega_i = 0$ for all $1 \le k < j$ where $\omega_i = \omega_{i+n}$.

Example

$$\omega = (+, +, -, -, -, -, +, -) \Rightarrow \operatorname{cvar}(\omega) = 4$$

$$(+,+,-,-,-,0,+,-) \quad \leftrightarrow \quad \{1,3,7,8\}$$
1 2 3 4 5 6 7 8

Aram Dermenjian (Manchester Uni) - Joint with: Nantel Bergeron and John Machacek

Main Theorem

Theorem (Bergeron, D., Machacek 2020)

The order complex $\Delta(P_n)$ is partitionable with h-vector

 $h_i(\Delta(P_n)) = |\{\pi \in D_n : |\operatorname{des}_B(\pi)| = i\}|$ for all $0 \le i \le n$

with Coxeter group of type D_n and descent set, des_B, of type B.

Example (n = 2)

$$\begin{array}{c|c} \pi \in D_n & \operatorname{des}_{B}(\pi) \\ \hline 12 & \varnothing \\ \hline \bar{2}\bar{1} & \{0\} \\ 21 & \{1\} \\ \bar{1}\bar{2} & \{0,1\} \end{array} \xrightarrow{\{(+,+)\}} \{(+,-)\} \{(+,-)\} \{(+,0)\} \\ \hline (0,+)\} \{(+,+)\} \{(+,-)\} \{(+,0)\} \\ \hline (0,+)\} \{(+,+)\} \{(+,-)\} \{(+,0)\} \\ \hline (0,+)\} \{(-,1)\} \\ \hline (0,+)\} \\ \hline (0,+)\} \{(-,1)\} \\ \hline (0,+)\} \\ \hline (1,+)\} \\ \hline (1,+)] \\ \hline (1,+)$$

Slides can be found at: dermenjian.com

Aram Dermenjian (Manchester Uni) - Joint with: Nantel Bergeron and John Machacek

Even signed permutations and chains (proof idea)

- 1. Use cyclic sign variations on the set of negative numbers to get a sign vector.
- 2. For each set of increasing sequences, replace signs with 0s to get a new sign vector.
- 3. Proceed inductively to get chain.

$$(+,+,-,-,-,-,+,-)$$

$$(+,+,-,-,0,-,+,-)$$

$$(+,+,-,-,0,-,+,-)$$

$$(+,0,-,-,0,-,0,-)$$

$$(57238146,\{1,3,7,8\})$$

$$(+,0,0,-,0,-,0,-)$$

$$(+,0,0,-,0,-,0,-)$$

$$des_{D}(\pi) = \{0,1,3,4\}$$

$$des_{D}(\pi) = \{1,3,4\}$$

Aram Dermenjian (Manchester Uni) - Joint with: Nantel Bergeron and John Machacek

Restriction of variations

•
$$\mathcal{PV}_{n,m} = \{\omega \in \mathcal{PV}_n : \operatorname{var}(\omega) \leq m\}.$$

$$\bullet P_{n,m} = (\mathcal{PV}_{n,m}, <).$$

■ $D_{n,m} = \{\pi \in D_n : \pi \text{ has at most } m \text{ negatives}\}.$

Theorem (Bergeron, D., Machacek 2020)

If $m \le n-1$ is even then the order complex $\Delta(P_{n,m})$ is partitionable. Moreover,

$$h_i(\Delta(P_{n,m})) = |\{\pi \in D_{n,m} : |des_B(\pi)| = i\}|$$

for each $0 \le i \le n$.