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The facial weak order

Outline

A tale of two stories:
Grouping reflections.
Arranging hyperplanes.

The facial weak order in all its glory.

Yeah, but is it a lattice? And other fun questions.

Current research
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The facial weak order

Coxeter systems
Finite Coxeter System (W ,S) such that

W := 〈s ∈ S | (sisj)mi,j = e for si , sj ∈ S〉
where mi,j ∈ N? and mi,j = 1 only if i = j .
A Coxeter diagram ΓW for a Coxeter System (W ,S) has S
as a vertex set and an edge labelled mi,j when mi,j > 2.

si sj

mi,j

Example

WB3 =
〈

s1, s2, s3 | s2
1 = s2

2 = s2
3 = (s1s2)4 = (s2s3)3 = (s1s3)2 = e

〉
ΓB3 :

s1 s2 s3

4
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Coxeter systems
Finite Coxeter System (W ,S) such that

W := 〈s ∈ S | (sisj)mi,j = e for si , sj ∈ S〉
where mi,j ∈ N? and mi,j = 1 only if i = j .
A Coxeter diagram ΓW for a Coxeter System (W ,S) has S
as a vertex set and an edge labelled mi,j when mi,j > 2.

si sj

mi,j

Example

WAn = Sn+1, symmetric group.

ΓAn :
s1 s2 s3 sn−1 sn
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The facial weak order

Coxeter systems
Finite Coxeter System (W ,S) such that

W := 〈s ∈ S | (sisj)mi,j = e for si , sj ∈ S〉
where mi,j ∈ N? and mi,j = 1 only if i = j .
A Coxeter diagram ΓW for a Coxeter System (W ,S) has S
as a vertex set and an edge labelled mi,j when mi,j > 2.

si sj

mi,j

Example

WI2(m) = D(m), dihedral group of order 2m.

ΓI2(m) :
s1 s2

m
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The facial weak order

Weak order

Let (W ,S) be a Coxeter system.
Let w ∈W such that w = s1 . . . sn for some si ∈ S. We say
that w has length n, `(w) = n, if n is minimal.

Example

Let ΓA2 : s t
.

`(stst) = 2 as stst = tstt = ts.

Let the (right) weak order be the order ≤R on the Cayley

graph where w ws
and `(w) < `(ws).
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The facial weak order

Lattice
Lattice - poset where every two elements have a meet
(greatest lower bound) and join (least upper bound).

Example

The lattice (N, |) where a ≤ b ⇐⇒ a |b.
meet - greatest common divisor
join - least common multiple

1

2 3

4

5

6

7

8

9 10

12

. . .

...
...

...
...

...
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The facial weak order

Weak order lattice
Theorem (Björner ’84)

Let (W ,S) be a finite Coxeter system. The weak order is a
lattice.

For finite Coxeter systems, there exists a longest element
in the weak order, w◦.

Example

Let ΓA2 : s t
.

e
t s

ts st

sts = w◦ = tst

A. Dermenjian – York Uni (Joint with: C. Hohlweg, T. McConville, V. Pilaud) 26 Nov 2020



The facial weak order

Root System
Let (V , 〈·, ·〉) be a real Euclidean space.
Let W be a group generated by a set of reflections S.
W ↪→ O(V ) gives representation as a finite reflection
group.
The reflection associated to α ∈ V\{0} is

sα(v) = v − 2 〈v , α〉
||α||2

α (v ∈ V )

A root system is Φ := {α ∈ V | sα ∈W , ||α|| = 1}
We have Φ = Φ+ t Φ− decomposable into positive and
negative roots.

αs

γ = αs + αt

αt

−αs

−γ

−αt

s t
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The facial weak order

Root systems↔ Coxeter systems
WA2 =

〈
s, t | s2 = t2 = (st)3 = e

〉
ΓA2 : s t

Perm(W ) = conv {w(x) | w ∈W}

αs

γ = αs + αt

αt

−αs

−γ

−αt

s t

xe(x)

t(x) s(x)

st(x)

sts(x)

ts(x)
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x
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The facial weak order

Inversion Sets

Let (W ,S) be a Coxeter system.
Define (left) inversion sets as the set N(w) := Φ+ ∩ w(Φ−).

Example

Let ΓA2 : s t
, with Φ given by the roots

αs
γ = αs + αt

αt

−αs

−γ
−αt

s t

s t

N(ts) = Φ+ ∩ ts(Φ−)
= Φ+ ∩ {αt , γ,−αs}
= {αt , γ}
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The facial weak order

Weak order and Inversion sets

Given w ,u ∈W then w ≤R u if and only if N(w) ⊆ N(u).

Example

Let ΓA2 : s t
, with Φ given by the roots

αs
γ = αs + αt

αt

−αs

−γ
−αt

e
t s

ts st

sts

∅

{αt} {αs}

{αt , γ} {αs, γ}
Φ+
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The facial weak order

Weak order and inversion sets

WA2 =
〈

s, t | s2 = t2 = (st)3 = e
〉

ΓA2 : s t

αsαt

γ

e ↔ ∅

{αt} ↔ t s ↔ {αs}

st ↔ {αs, γ}

{αs, αt , γ} ↔ sts

{αt , γ} ↔ ts
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The facial weak order

Hyperplanes

(V , 〈·, ·〉) - n-dim real Euclidean vector space.
A hyperplane H is codim 1 subspace of V with normal eH .

Example
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The facial weak order

Arrangements
A hyperplane arrangement is A = {H1,H2, . . . ,Hk}.
A is central if {0} ⊆

⋂
A.

A is essential if span {eH}H∈A = V .
A Central & Essential⇒ {0} =

⋂
A.

Example

Not central Central
Not essential

Central
Essential
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The facial weak order

Regions and faces

Regions RA - connected components of V without A.
Faces FA - intersections of closures of some regions.

e1

e2

e3

H3H1

H2

F0

F1

F2F3

F4

F5
R0

R1

R2

R3

R4

R5
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The facial weak order

Poset of regions
Base region B ∈ RA - some fixed region
Separation set for R ∈ RA
S(R) := {H ∈ A | H separates R from B}

Poset of regions PR(A,B) where
R ≤PR R′ ⇐⇒ S(R) ⊆ S(R′)

H3H1

H2

B

R1

R3

R4

R5

R2
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Base region B ∈ RA - some fixed region
Separation set for R ∈ RA
S(R) := {H ∈ A | H separates R from B}

Poset of regions PR(A,B) where
R ≤PR R′ ⇐⇒ S(R) ⊆ S(R′)

H3H1

H2

B

R1

R3

R4

R5

{H1,H2}
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Poset of regions
Base region B ∈ RA - some fixed region
Separation set for R ∈ RA
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Poset of regions PR(A,B) where
R ≤PR R′ ⇐⇒ S(R) ⊆ S(R′)

H3H1

H2

{H1,H2}

∅

{H1}

A

{H2,H3}

{H3}
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Poset of regions
Base region B ∈ RA - some fixed region
Separation set for R ∈ RA
S(R) := {H ∈ A | H separates R from B}
Poset of regions PR(A,B) where
R ≤PR R′ ⇐⇒ S(R) ⊆ S(R′) H3H1

H2

{H1,H2}

∅

{H1}

A

{H2,H3}

{H3}
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The facial weak order

Simplicial arrangements
A region R is simplicial if normal vectors for boundary
hyperplanes are linearly independent.
A is simplicial if all RA simplicial.

Example

Simplicial Not simplicial
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The facial weak order

Lattice of regions
An arrangement A in Rn is simplicial if every region is simplicial
(i.e., has n boundary hyperplanes).

Theorem (Björner, Edelman,
Ziegler ’90)

If A is simplicial then PR(A,B) is a
lattice for any B ∈ RA.

If PR(A,B) is a lattice then B is
simplicial.
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The facial weak order

Coxeter Arrangements

Example

A Coxeter arrangement is the (simplicial) hyerplane
arrangement associated to a Coxeter group.

Coxeter Groups Hyperplane Arrangements
Reflecting hyperplanes ↔ Hyperplane arrangement

Root system ↔ Normals to hyperplanes
Inversion sets ↔ Seperation sets

Weak order ↔ Poset of regions
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The facial weak order

Motivation
2001: Krob, Latapy, Novelli, Phan, and Schwer extended
the weak order of type A Coxeter groups to all the faces of
its associated arrangement. They

gave a local definition of this order using covers,
gave a global definition of this order combinatorially,
and
showed that the poset for this order is a lattice.

2006: Palacios and Ronco extended this new order to
Coxeter arrangements of all types using cover relations.
Our Questions:

Can we give a global equivalent definition to Palacios,
Ronco cover relation definition?
What happens in the hyperplane arrangement story?
When is this a lattice?
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The facial weak order

Facial intervals
Proposition (Björner, Las Vergas, Sturmfels, White, Ziegler ’93)

Let A be central with base region B. For every F ∈ FA there is
a unique interval [mF ,MF ] in PR(A,B) such that
[mF ,MF ] =

{
R ∈ RA | F ⊆ R

}
H3H1

H2
F1

F0

F2F3

F4

F5
B

R3

R4

R5

R1

R2
0

B

R5 R1

R4 R2

R3

[B,R1]

[R2,R3][R4,R3]

[B,R5]

[R5,R4]

[R1,R2]

[B,B]

[R1,R1]

[R2,R2]

[R3,R3]

[R4,R4]

[R5,R5]

[B,R3]
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Facial intervals
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Let A be central with base region B. For every F ∈ FA there is
a unique interval [mF ,MF ] in PR(A,B) such that
[mF ,MF ] =
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}
H3H1

H2
F1

F0

F2F3

F4

F5
B

R3

R4

R5 R1

R2
0

B

R5 R1

R4 R2

R3

[B,R1]

[R2,R3][R4,R3]

[B,R5]

[R5,R4] [R1,R2]

[B,B]

[R1,R1]

[R2,R2]

[R3,R3]

[R4,R4]

[R5,R5]

[B,R3]
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The facial weak order

Facial weak order
Let A be a central hyperplane arrangement and B a base
region in RA.

Definition

The facial weak order is the order FW(A,B) on FA where for
F ,G ∈ FA:

F ≤F G ⇐⇒ mF ≤PR mG and MF ≤PR MG

mF

MF mG

MG
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The facial weak order

Facial weak order - Example

B

R1

R2

R3

R4

R5

[R1,R2]

[R2,R3][R4,R3]

[R5,R4]

[B,R5] [B,R1]

[B,B]

[R1,R1]

[R2,R2]

[R3,R3]

[R4,R4]

[R5,R5]

[B,R3]
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R3

R4

R5

[R1,R2]

[R2,R3][R4,R3]
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[B,R5] [B,R1]
[B,B]

[R1,R1]

[R2,R2]

[R3,R3]

[R4,R4]

[R5,R5]

[B,R3]
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The facial weak order

Parabolic subgroups
(W ,S) a Coxeter system and I ⊆ S.

WI = 〈I〉— standard parabolic subgroup (long elt: w◦,I).
W I := {w ∈W | `(w) ≤ `(ws), for all s ∈ I} is the set of
min length coset representatives for W/WI .
Unique factorization: w = w I · wI with w I ∈W I , wI ∈WI .
By convention in this talk xWI means x ∈W I .

Example

Let ΓW : r s t u
and I = {r , t ,u}.

Then ΓWI : r t u

w = rtustr w = rts · utr
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The facial weak order

Coxeter complex

(W ,S) a Coxeter system and I ⊆ S.
Coxeter complex - PW - complex whose faces are all the
standard parabolic cosets of W .

W{s}W{t}

sW{t}tW{s}

stW{s}tsW{t}

e

t s

ts st

sts

W
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The facial weak order

Facial intervals
Proposition (Björner, Las Vergas, Sturmfels, White, Ziegler ’93)

Let (W ,S) be a Coxeter system and xWI a standard parabolic
coset. Then there exists a unique interval [x , xw◦,I ] in the weak
order such that

xWI = [x , xw◦,I ].

W{s}W{t}

sW{t}tW{s}

stW{s}tsW{t}

e

t s

ts st

sts

W
e

t s

ts st
sts

[e, s][e, t ]

[s, st ][t , ts]

[st , sts][ts, sts]

[e,e]

[t , t ] [s, s]

[ts, ts] [st , st ]

[sts, sts]

[e, sts]
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The facial weak order

Facial weak order
Definition

Let ≤F be the order on the Coxeter complex PW defined by

xWI ≤F yWJ ⇐⇒ x ≤R y and xw◦,I ≤R yw◦,J

e
t s

ts st
sts

[e, e]

[s, s][t , t ]

[st , st ][ts, ts]

[sts, sts]

[e, s][e, t ]

[t , ts] [s, st ]

[st , sts][ts, sts]

[e, sts]
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The facial weak order

Cover relations
Proposition (D., Hohlweg, McConville, Pilaud, ’19+)

For F ,G ∈ FA if |dim(F )− dim(G)| = 1 and
1. F ⊆ G, MF = MG, or
2. G ⊆ F, mF = mG.
then F lF G.

F0

F1

F2F3

F4

F5
R0

R1

R2

R3

R4

R5

F1

F2F3

F4

F5 F0
B
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R2

R3

R4

R5

0
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The facial weak order

Cover relations

Let (W ,S) be a finite Coxeter system.

Definition (Krob et.al. [2001, type A], Palacios, Ronco [2006])

The (right) facial weak order is the order ≤COV on the Coxeter
complex PW defined by cover relations of two types:

(1) xWI lCOV xWI∪{s} if s /∈ I and x ∈W I∪{s},

(2) xWI lCOV xw◦,Iw◦,Ir{s}WIr{s} if s ∈ I,

where I ⊆ S and x ∈W I .
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The facial weak order

Cover relations example
(1) xWI lCOV xWI∪{s} if s /∈ I and x ∈W I∪{s}

(2) xWI lCOV xw◦,Iw◦,Ir{s}WIr{s} if s ∈ I

e

st

stts

sts

W{s}W{t}

tW{s} sW{t}

stW{s}tsW{t}

W

(1)(1)

(1)(1)

(1)(1)

(2)(2)

(2)(2)

(2)(2)

(1)(1)

(2)(2)
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The facial weak order

Zonotopes
Zonotope ZA is the convex polytope:

ZA :=

v ∈ V | v =
k∑

i=1

λiei , such that |λi | ≤ 1 for all i


Theorem (Edelman ’84, McMullen ’71)

There is a bijection between FA and the nonempty faces of ZA
given by the map

τ(F ) =

v ∈ V | v =
∑

F (Hi )=0

λiei +
∑

F (Hj ) 6=0

µjej


where |λi | ≤ 1 for all i and µj = F (Hj)
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The facial weak order

Zonotope - Construction example
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The facial weak order

Zonotope - Construction example
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The facial weak order

Zonotope - Construction example
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The facial weak order

Zonotope - Construction example
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The facial weak order

Zonotope - Construction example
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The facial weak order

Zonotope - Construction example

e1

e2
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H3H1
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The facial weak order

Root inversion sets
roots ΦA := {±e1,±e2, . . . ,±ek}
root inversion set
R(F ) := {e ∈ ΦA | 〈x ,e〉 ≤ 0 for some x ∈ F}.

R(R4)

R(R3)

R(R5)

R(R2)
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The facial weak order

Root inversion sets
Proposition (D., Hohlweg, McConville, Pilaud ’19+)

Let F be a face. Then

inner primal cone (τ(F )) = cone (R(F )) .
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The facial weak order

Root inversion set order
Definition

For faces F and G in FA, then F ≤RIS G if and only if

R(F )\R(G) ⊆ Φ−A and R(G)\R(F ) ⊆ Φ+
A
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−e1

−e2
−e3
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The facial weak order

Root inversion set order
Definition

For faces F and G in FA, then F ≤RIS G if and only if

R(F )\R(G) ⊆ Φ−A and R(G)\R(F ) ⊆ Φ+
A
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The facial weak order

Root inversion sets
Definition (Root Inversion Set)

Let xWI be a standard parabolic coset. The root inversion set is
the set

R(xWI) := x(Φ− ∪ Φ+
I )

Note that N(x) = R(xW∅) ∩ Φ+.

W{s}W{t}

sW{t}tW{s}

stW{s}tsW{t}

e

t s

ts st

sts

W
αs

γ
αt

−αs

−γ
−αt

s
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The facial weak order

Root inversion sets
Example

R(sW{t}) = s(Φ− ∪ Φ+
{t})

= s({−αs,−αt ,−γ} ∪ {αt})
= {αs,−γ,−αt , γ}
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The facial weak order

Root inversion sets
Example

R(sW{t}) = s(Φ− ∪ Φ+
{t})
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The facial weak order

Root inversion sets
Example

R(sW{t}) = s(Φ− ∪ Φ+
{t})

= s({−αs,−αt ,−γ} ∪ {αt})
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The facial weak order

Root inversion sets
Example

R(sW{t}) = s(Φ− ∪ Φ+
{t})

= s({−αs,−αt ,−γ} ∪ {αt})
= {αs,−γ,−αt , γ}

W{s}W{t}

sW{t}tW{s}

stW{s}tsW{t}

e

t s

ts st

sts

W
αs

γ
αt

−αs

−γ
−αt

s

A. Dermenjian – York Uni (Joint with: C. Hohlweg, T. McConville, V. Pilaud) 26 Nov 2020



The facial weak order

Root inversion sets

Proposition (D., Hohlweg, Pilaud ’18)

Let xWI be a standard parabolic coset of W. Then

inner primal cone (F(xWI)) = cone (R(xWI)) .

W{s}W{t}
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The facial weak order

Equivalent definitions

Theorem (D., Hohlweg, McConville, Pilaud ’19+)

For F ,G ∈ FA the following are equivalent:
mF ≤PR mG and MF ≤PR MG in poset of regions PR(A,B).
There exists a chain of covers in FW(A,B) such that

F = F1 lF F2 lF · · ·lF Fn = G

R(F )\R(G) ⊆ Φ−A and R(G)\R(F ) ⊆ Φ+
A.
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The facial weak order

Equivalent definitions

Theorem (D., Hohlweg, Pilaud ’19)

The following conditions are equivalent for two standard
parabolic cosets xWI and yWJ in the Coxeter complex PW

x ≤R y and xw◦,I ≤R yw◦,J .
xWI ≤COV yWJ

R(xWI) r R(yWJ) ⊆ Φ− and R(yWJ) r R(xWI) ⊆ Φ+.
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The facial weak order

A super quick recap - Coxeter groups

(W ,S) Coxeter system with
W := 〈s ∈ S | (sisj)mi,j = e for si , sj ∈ S〉.
(right) weak order ≤R - w → ws and `(w) < `(ws).

Example

Let ΓA2 : s t
.

e
t s

ts st

sts = w◦ = tst
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The facial weak order

A super quick recap - Coxeter groups
Root system Φ = {α ∈ V | sα ∈W}.
(left) inversion set N(w) := Φ+ ∩ w(Φ−).
w ≤R u if and only if N(w) ⊆ N(u).

Example

Let ΓA2 : s t
, with Φ given by the roots

αs
γ = αs + αt

αt

−αs

−γ
−αt

e
t s

ts st

sts

∅

{αt} {αs}

{αt , γ} {αs, γ}
Φ+
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The facial weak order

A super quick recap - Coxeter groups
WI = 〈I〉 for I ⊆ S.
xWI with x ∈W I is a standard parabolic coset.
Facial interval: xWI =

[
x , xw◦,I

]
Example

W{s}W{t}

sW{t}tW{s}

stW{s}tsW{t}

e

t s

ts st

sts

W
e

t s

ts st
sts
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The facial weak order

A super quick recap - Coxeter groups

R(xWI) = x
(

Φ− ∪ Φ+
I

)
Example

W{s}W{t}

sW{t}tW{s}

stW{s}tsW{t}

e

t s

ts st

sts

W
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γ
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The facial weak order

A super quick recap - Coxeter groups - Facial weak
order

Cover relations / original definition:

(1) xWI lCOV xWI∪{s} if s /∈ I and x ∈W I∪{s},

(2) xWI lCOV xw◦,Iw◦,Ir{s}WIr{s} if s ∈ I,

Theorem (D., Hohlweg, Pilaud ’19)

The following conditions are equivalent for two standard
parabolic cosets xWI and yWJ in the Coxeter complex PW

x ≤R y and xw◦,I ≤R yw◦,J .
xWI ≤COV yWJ

R(xWI) r R(yWJ) ⊆ Φ− and R(yWJ) r R(xWI) ⊆ Φ+.
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The facial weak order

A super quick recap - Hyperplane arrangements
A = {H1, . . . ,Hk} is a (central, essential) arrangement.
RA is the set of regions (V rA)
FA is the set of faces (intersections of region closures)

Example
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The facial weak order

A super quick recap - Hyperplane arrangements
Poset of regions PR(A,B)
Simplicial - every region has n bounding hyperplanes
If A is simplicial then PR(A,B) is a lattice.

Example

H3H1

H2

{H1,H2}

∅
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The facial weak order

A super quick recap - Hyperplane arrangements
Facial interval of face F - [mF ,MF ] in PR(A,B).

Example
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F2F3

F4

F5
B

R3

R4

R5 R1
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The facial weak order

A super quick recap - Hyperplane arrangements
Root inversion set:
R(F ) := {e ∈ ΦA | 〈x ,e〉 ≤ 0 for some x ∈ F}.

Example
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The facial weak order

A super quick recap - Facial weak order
Proposition (D., Hohlweg, McConville, Pilaud, ’19+)

For F ,G ∈ FA if |dim(F )− dim(G)| = 1 and
1. F ⊆ G, MF = MG, or
2. G ⊆ F, mF = mG.
then F lF G.

Theorem (D., Hohlweg, McConville, Pilaud ’19+)

For F ,G ∈ FA the following are equivalent:
mF ≤PR mG and MF ≤PR MG in poset of regions PR(A,B).
There exists a chain of covers in FW(A,B) such that

F = F1 lF F2 lF · · ·lF Fn = G
R(F )\R(G) ⊆ Φ−A and R(G)\R(F ) ⊆ Φ+

A.
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The facial weak order

Equivalence for type A2 Coxeter arrangement

mF ≤PR mG
MF ≤PR MG

mF ≤PR mG
MF ≤PR MG
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The facial weak order

Equivalence for type A2 Coxeter arrangement

mF ≤PR mG
MF ≤PR MG
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The facial weak order

Equivalence for type A2 Coxeter arrangement

mF ≤PR mG
MF ≤PR MG
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Facial weak order lattice
Theorem (D., Hohlweg, Pilaud ’19)

The facial weak order (PW ,≤F ) is a lattice with the meet and
join of two standard parabolic cosets xWI and yWJ given by:

xWI ∧ yWJ = z∧WK∧ ,

xWI ∨ yWJ = z∨WK∨ .

where,

z∧ = x ∧ y and K∧ = DL
(
z−1
∧ (xw◦,I ∧ yw◦,J)

)
, and

z∨ = xw◦,I ∨ yw◦,J and K∨ = DL
(
z−1
∨ (x ∨ y)

)

Corollary (D., Hohlweg, Pilaud ’19)

The weak order is a sublattice of the facial weak order lattice.
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Facial weak order lattice

Theorem (D., Hohlweg, McConville, Pilaud ’19+)

Let A be an arrangement and fix a base region B. If the poset
of regions PR(A,B) is a lattice then the facial weak order
FW(A,B) is a lattice.

Corollary (D., Hohlweg, McConville, Pilaud ’19+)

The lattice of regions is a sublattice of the facial weak order
lattice when A is simplicial.
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Covectors
covector - a sign vector in {−,0,+}A with signs relative to
hyperplanes.
L ⊆ {−,0,+}A - set of covectors

Example

F4(H1) = +; F4(H2) = 0; F4(H3) = − F4 ↔ (+,0,−)

e1
e2

e3

H3H1

H2
F4

(0,+,+)

(−, 0,+)

(−,−, 0)(0,−,−)

(+, 0,−)

(+,+, 0) (+,+,+)

(−,+,+)

(−,−,+)

(−,−,−)

(+,−,−)

(+,+,−)
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H3H1

H2

F4

(0,+,+)

(−, 0,+)

(−,−, 0)(0,−,−)

(+, 0,−)

(+,+, 0) (+,+,+)

(−,+,+)

(−,−,+)

(−,−,−)

(+,−,−)

(+,+,−)

A. Dermenjian – York Uni (Joint with: C. Hohlweg, T. McConville, V. Pilaud) 26 Nov 2020



The facial weak order

Covector definition
Definition

For X ,Y ∈ L:

X ≤L Y ⇐⇒ X (H) ≥ Y (H) ∀H with − < 0 < +

e1
e2

e3

H3H1

H2

(0,+,+)

(−, 0,+)

(−,−, 0)(0,−,−)

(+, 0,−)

(+,+, 0) (+,+,+)

(−,+,+)

(−,−,+)

(−,−,−)

(+,−,−)

(+,+,−)

(−, 0,+)

(−,−, 0)(0,−,−)

(+, 0,−)

(+,+, 0) (0,+,+)
(+,+,+)

(−,+,+)

(−,−,+)

(−,−,−)

(+,−,−)

(+,+,−)

(0, 0, 0)
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Equivalent definitions

Theorem (D., Hohlweg, McConville, Pilaud ’19+)

For F ,G ∈ FA the following are equivalent:
F ≤F G
F ≤L G in terms of covectors (F (H) ≥ G(H) ∀H ∈ A)
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Covector operations
For X ,Y ∈ L ⊆ {−,0,+}A

Composition: (X ◦ Y )(H) =
{

Y (H) if X (H) = 0
X (H) otherwise

Reorientation: (X−Y ) (H) =
{
−X (H) if Y (H) = 0
X (H) otherwise

? For F ∈ FA, [mF ,MF ] = [F ◦ B,F ◦ −B]

Example

Let A = {H1,H2,H3,H4,H5}.

X = (−,0,+,+,0) Y = (0,0,−,0,+)

Then

X ◦ Y = (−,0,+,+,+) X−Y = (+,0,+,−,0)
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Lattice proof - Joins
Proof uses two key components :

Lemma (Björner, Edelman, Ziegler ’90)

1: If L is a finite, bounded poset such that x ∨ y exists whenever
x and y both cover some z ∈ L, then L is a lattice.

2: Cover relation: Z l X iff |dim X − dim Z | = 1 and
Z ⊆ X , MZ = MX or X ⊆ Z , mZ = mX . Then Z l X and Z l Y
gives three cases:

1. X ∪ Y ⊆ Z , mX = mY = mZ and
dim X = dim Y = dim Z − 1,

2. Z ⊆ X ∩ Y , MX = MY = MZ and
dim X = dim Y = dim Z + 1, and

3. X ⊆ Z ⊆ Y , mX = mZ , MY = MZ and
dim X = dim Z − 1 = dim Y − 2.
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1. X ∪ Y ⊆ Z , mX = mY = mZ and
dim X = dim Y = dim Z − 1

H3H1

H2

F0 = X

F1

F2F3

F4

F5 = Y

B = Z

R1

R2

R3

R4

R5

0
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2. Z ⊆ X ∩ Y , MX = MY = MZ and
dim X = dim Y = dim Z + 1

H3H1

H2

F0

F1

F2 = YF3 = X

F4

F5

B

R1

R2

R3

R4

R5

0 = Z
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2. Z ⊆ X ∩ Y , MX = MY = MZ and
dim X = dim Y = dim Z + 1

H3H1

H2

F0

F1

F2 = YF3 = X

F4

F5

B

R1

R2

R3

R4

R5

0 = Z
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3. X ⊆ Z ⊆ Y , mX = mZ , MY = MZ and
dim X = dim Z − 1 = dim Y − 2

H3H1

H2

F0

F1

F2F3

F4

F5 = Z

B

R1

R2

R3

R4

R5 = Y

0 = X
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3. X ⊆ Z ⊆ Y , mX = mZ , MY = MZ and
dim X = dim Z − 1 = dim Y − 2
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3. X ⊆ Z ⊆ Y , mX = mZ , MY = MZ and
dim X = dim Z − 1 = dim Y − 2

H3H1

H2

F0

F1

F2F3

F4

F5 = Z

B = Y−Z

R1

R2

R3

R4

R5 = Y

0 = X

A. Dermenjian – York Uni (Joint with: C. Hohlweg, T. McConville, V. Pilaud) 26 Nov 2020



The facial weak order

3. X ⊆ Z ⊆ Y , mX = mZ , MY = MZ and
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Example: B3 Coxeter arrangement
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Properties of the facial weak order

The dual of a poset P is the poset Pop where x ≤ y in P iff
y ≤ x in Pop. A poset is self-dual if P ∼= Pop.
A lattice is semi-distributive if x ∨ y = x ∨ z implies
x ∨ y = x ∨ (y ∧ z) and similarly for the meets.

Theorem (D., Hohlweg, McConville, Pilaud ’19+)

The facial weak order FW(A,B) is self-dual. If furthermore, A is
simplicial, FW(A,B) is a semi-distributive lattice.
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Join-irreducible elements

An element is join-irreducible if and only if it covers exactly
one element.

Proposition (D., Hohlweg, McConville, Pilaud ’19+)

If A is simplicial and F a face with facial interval [mF ,MF ]. Then
F is join-irreducible in FW(A,B) if and only if MF is
join-irreducible in PR(A,B) and codim(F ) ∈ {0,1}
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Möbius function
Recall that the Möbius function is given by:

µ(x , y) =


1 if x = y
−
∑

x≤z<y µ(x , z) if x < y
0 otherwise

Proposition (D., Hohlweg, McConville, Pilaud ’19+)

Let X and Y be faces such that X ≤ Y and let Z = X ∩ Y.

µ(X ,Y ) =
{

(−1)rk(X)+rk(Y ) if X ≤ Z ≤ Y and Z = X−Z ∩ Y
0 otherwise
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Lattice Congruences
Definition

A lattice congruence is an equivalence relation ≡ on a lattice
(L,≤) such that for each x1 ≡ x2 and y1 ≡ y2 then

1. x1 ∧ y1 ≡ x2 ∧ y2, and
2. x1 ∨ y1 ≡ x2 ∨ y2.

Theorem (D., Hohlweg, Pilaud ’19)

Given a lattice congruence ≡ on (W ,≤R), the equivalence
classes on (PW ,≤F) defined by

xWI yWJ ⇐⇒ x ≡ y and xw◦,I ≡ yw◦,J

give us a lattice congruence.
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Facial Boolean Lattice
Corollary (D., Hohlweg, Pilaud ’19)

Let the (left) root descent set of a coset xWI be the set of roots

D(xWI) := R(xWI) ∩ ±∆ ⊆ Φ.

Let xWI
des yWJ if and only if D(xWI) = D(yWJ).

e

s t

st ts

sts

W{s} W{t}

tW{s}sW{t}

stW{s} tsW{t}

W [e]des

[s]des [t]des

[sts]des

[W{s}]des [W{t}]des

[stW{s}]des [tsW{t}]des
[W ]des

D(e)

D(s) D(t)

D(st) D(ts)

D(sts)

D(W{s}) D(W{t})

D(sW{t}) D(tW{s})

D(stW{s}) D(tsW{t})

D(W )
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Facial Cambrian Lattice

Corollary (D., Hohlweg, Pilaud ’19)

Let c be any Coxeter element of W. Let ≡c be the c-Cambrian
congruence (due to Reading [Cambrian Lattice, 2004]). Then
let xWI

c yWJ ⇐⇒ x ≡c y and xw◦,I ≡c yw◦,J .

e

s t

st ts

sts

W{s} W{t}

tW{s}sW{t}

stW{s} tsW{t}

W

c = st

[e]c

[s]c

[st]c

[sts]c

[W{s}]c
[W{t}]c

[t]c[sW{t}]c

[stW{s}]c
[tsW{t}]c

[W ]c
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Congruence normal

Definition

A lattice is congruence normal if it can be obtained from the
1-element lattice by a series of doublings of convex sets.

Example

→ → →
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Definition
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Congruence uniform
Let L be a finite lattice and J(L) be the join-irreducibles.

Con(L) is the poset of lattice congruences partially ordered
by refinement.
L is congruence uniform if J(Con(L))→ J(L) is a bijection
and similarly for meets.

Theorem (Day ’94)

Let L be a finite lattice. The following are equivalent:
1. L is congruence uniform
2. L is semi-destributive and congruence normal
3. L can be obtained from the 1-element lattice by a series of

doublings of intervals.
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Congruence uniform

Theorem (Caspard, Conte de Poly-Barbut, Morvan ’04)

The weak order is congruence uniform.
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Shards

A. Dermenjian – York Uni (Joint with: C. Hohlweg, T. McConville, V. Pilaud) 26 Nov 2020



The facial weak order

Shards
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Shards
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Shard intersection graph
Let Sh(A,B) denote the set of shards.

Definition

For Σ,Σ′ ∈ Sh(A,B) let Σ→ Σ′ if and only if Σ "cuts" Σ′.

Σ1 Σ2

Σ3 Σ4

B

Σ1 Σ2

Σ3 Σ4
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Congruence uniform and shard intersection graph

Theorem (Reading ’04)

Let A be a simplicial arrangement. The lattice PR(A,B) is
congruence uniform if and only if Sh(A,B) is acyclic.
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Cyclic example

Σ1 → Σ2 → Σ3 → Σ4 → Σ1
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A nice conjecture

The normal fan of a polytope, is the collection of normal cones
for every face.

Conjecture (Padrol, Pilaud, Ritter ’20)

Let A be an arrangement whose zonotope has normal fan F .
Furthermore, suppose that PR(A,B) is a congruence uniform
lattice and ≡ is any lattice congruence of PR(A,B). Then the
quotient fan F≡ is the normal fan of a polytope.

Conjecture (Padrol, Pilaud, Ritter ’20)

Let A be an arrangement such that PR(A,B) is a congruence
uniform lattice. Then every shard admits a shard polytope.
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Further Works

Can we explicitly state the join/meet of two elements?

When is the facial weak order congruence uniform?

What happens when we look at shards?

Can we generalize this to polytopes?
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Thank you!
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